...
首页> 外文期刊>Physical Review, A. Atomic, molecular, and optical physics >Quadrature interferometry for nonequilibrium ultracold atoms in optical lattices
【24h】

Quadrature interferometry for nonequilibrium ultracold atoms in optical lattices

机译:光学晶格中非平衡超冷原子的正交干涉法

获取原文
获取原文并翻译 | 示例
           

摘要

We develop an interferometric technique for making time-resolved measurements of field-quadrature operators for nonequilibrium ultracold bosons in optical lattices. The technique exploits the internal state structure of magnetic atoms to create two subsystems of atoms in different spin states and lattice sites. A Feshbach resonance turns off atom-atom interactions in one spin subsystem, making it a well-characterized reference state, while atoms in the other subsystem undergo nonequilibrium dynamics for a variable hold time. Interfering the subsystems via a second beam-splitting operation, time-resolved quadrature measurements on the interacting atoms are obtained by detecting relative spin populations. The technique can provide quadrature measurements for a variety of Hamiltonians and lattice geometries (e.g., cubic, honeycomb, superlattices), including systems with tunneling, spin-orbit couplings using artificial gauge fields, and higher-band effects. Analyzing the special case of a deep lattice with negligible tunneling, we obtain the time evolution of both quadrature observables and their fluctuations. As a second application, we show that the interferometer can be used to measure atom-atom interaction strengths with super-Heisenberg scaling n~?-3/2 in the mean number of atoms per lattice site, and standard quantum limit scaling M-1/2 in the number of lattice sites. In our analysis, we require M1 and for realistic systems n? is small, and therefore the scaling in total atom number N=n?M is below the Heisenberg limit; nevertheless, measurements testing the scaling behaviors for interaction-based quantum metrologies should be possible in this system.
机译:我们开发了一种干涉测量技术,用于对光晶格中非平衡超冷玻色子的场正交算子进行时间分辨测量。该技术利用磁性原子的内部状态结构来创建处于不同自旋态和晶格位点的两个原子子系统。 Feshbach共振会关闭一个自旋子系统中的原子与原子的相互作用,使其成为表征良好的参考状态,而另一个子系统中的原子在可变的保持时间内会经历非平衡动力学。通过第二次分束操作干扰子系统,通过检测相对自旋种群获得了相互作用原子上的时间分辨正交测量结果。该技术可以为各种哈密顿量和晶格几何形状(例如立方,蜂窝,超晶格)提供正交测量,包括具有隧道效应的系统,使用人工规范场的自旋轨道耦合以及更高频带的效应。分析具有可忽略的隧穿的深晶格的特殊情况,我们获得了正交可观测量及其波动的时间演化。作为第二个应用,我们证明了干涉仪可用于测量每个晶格位平均原子数中的超海森堡标度n〜?-3/2的原子-原子相互作用强度,以及标准量子极限标度M-1晶格位点数为/ 2。在我们的分析中,我们需要M1,对于实际系统,需要n1。很小,因此总原子数N = n?M的标度低于海森堡极限;但是,在此系统中应该可以进行测试基于交互作用的量子计量学的缩放行为的测量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号