...
首页> 外文期刊>Physica, B. Condensed Matter >Effect of interfacial layer on water flow in nanochannels: Lattice Boltzmann simulations
【24h】

Effect of interfacial layer on water flow in nanochannels: Lattice Boltzmann simulations

机译:界面层对纳米通道中水流的影响:Lattice Boltzmann模拟

获取原文
获取原文并翻译 | 示例

摘要

A novel interfacial model was proposed to understand water flow mechanism in nanochannels. Based on our pore-throat nanochannel model, the effect of interfacial layer on water flow in nanochannels was quantitatively studied using Lattice Boltzmann method (LBM). It is found that both the permeability of nanochannel and water velocity in the nanochannel dramatically decrease with increasing the thickness of interfacial layer. The permeability of nanochannel with pore radius of 10 nm decreases by about three orders of magnitude when the thickness of interfacial layer is changed from 0 nm to 3 nm gradually. Furthermore, it has been demonstrated that the cross-section shape has a great effect on the water flow inside nanochannel and the effect of interfacial layer on the permeability of nanochannel has a close relationship with cross-section shape when the pore size is smaller than 12 nm. Besides, both pore throat ratio and throat length can greatly affect water flow in nanochannels, and the influence of interfacial layer on water flow in nanochannels becomes more evident with increasing pore-throat ratio and throat length. Our theoretical results provide a simple and effective method to study the flow phenomena in nano-porous media, particularly to quantitatively study the interfacial layer effect in nano-porous media. (C) 2016 Elsevier B.V. All rights reserved.
机译:提出了一种新型的界面模型来理解纳米通道中的水流机理。基于我们的孔喉纳米通道模型,使用莱迪思·玻耳兹曼方法(LBM)定量研究了界面层对纳米通道中水流的影响。结果发现,随着界面层厚度的增加,纳米通道的渗透率和水的流速都急剧下降。当界面层的厚度从0 nm逐渐变为3 nm时,孔半径为10 nm的纳米通道的渗透率降低了大约三个数量级。此外,已经证明,当孔径小于12时,横截面形状对纳米通道内的水流动具有很大影响,并且界面层对纳米通道的渗透性的影响与横截面形状密切相关。纳米此外,孔喉比和喉道长度都可以极大地影响纳米通道中的水流量,并且随着孔喉比和喉道长度的增加,界面层对纳米通道中水流量的影响变得更加明显。我们的理论结果为研究纳米多孔介质中的流动现象,特别是定量研究纳米多孔介质中的界面层效应提供了一种简单有效的方法。 (C)2016 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号