...
首页> 外文期刊>Physica, B. Condensed Matter >Effect of aluminum content on the mechanochemical synthesis of in-situ TiN in the Al-Ti-AlN system and subsequent shock consolidation
【24h】

Effect of aluminum content on the mechanochemical synthesis of in-situ TiN in the Al-Ti-AlN system and subsequent shock consolidation

机译:铝含量对Al-Ti-AlN体系中原位TiN的机械化学合成及其后冲击强化的影响

获取原文
获取原文并翻译 | 示例

摘要

To determine the effect of aluminum content on the formation of in-situ TiN in the AlTiAlN system, a mixture of aluminum, titanium and aluminum nitride powders was subjected to high energy milling. Al content of the mixture was changed according to the following stoichiometric reaction: TiAlNXAl→ TiN(1X)Al. The value of X was varied from 5.35 to 19.65 based on the stoichiometric calculation of the molar mass of each component expected to result in aluminum matrix composite with TiN weights of 30%, 20% and 10%, respectively, in addition to reaction corresponding to X=0(TiAlN→TiNAl). Thermodynamic factors determine that the amount of Al in the mixture plays a key role in the formation of in-situ TiN. XRD and EPMA results showed that at lower Al content (X=0, 5.35), reaction proceed through a gradual mode. By increasing Al content (X=19.65), no mechanochemical reaction occurred between Ti and AlN. Continuation of the milling process allowed acquisition of in-situ TiN in the designed compositions of AlNTiN, AlTiAlN30%TiN, and to some extent, of AlTiAlN20%TiN. A nanocrystalline solid solution evolved by mechanical alloying (MA) was sustained for prolonged milling time. The mean TiN crystallite size obtained was 10 nm for the AlNTiN composition. The end product milled powder after 40 h of milling time, equating to the AlTiAlN30%TiN composition was consolidated into bulk compact using the underwater shock compaction method. The milled specimens were characterized by XRD, scanning electron microscopy (SEM), electron probe microanalysis (EPMA) and microhardness testing. The sample had a uniform and fine-grained composite structure with 99% theoretical density and average microhardness of 434 HV0.1. The results confirmed the possibility of fabricating reliable bulk nanostructured materials by imposing shock compaction on submicron sized powders.
机译:为了确定铝含量对AlTiAlN系统中原位TiN形成的影响,对铝,钛和氮化铝粉末的混合物进行了高能研磨。根据以下化学计量反应改变混合物的Al含量:TiAlNXAl→TiN(1X)Al。基于化学计量计算的每种组分的摩尔质量,X值从5.35到19.65不等,除了相应于反应的反应,TiN重量分别为30%,20%和10%的铝基复合材料X = 0(TiAlN→TiNAl)。热力学因素确定混合物中的Al量在原位TiN的形成中起关键作用。 XRD和EPMA结果表明,在较低的Al含量(X = 0,5.35)下,反应以渐进方式进行。通过增加Al含量(X = 19.65),Ti和AlN之间没有发生机械化学反应。继续进行研磨过程,可以在设计的AlNTiN,AlTiAlN30%TiN和某种程度上的AlTiAlN20%TiN组成中获取原位TiN。通过机械合金化(MA)演化出的纳米晶固溶体可以延长研磨时间。对于AlNTiN组合物,获得的平均TiN微晶尺寸为10nm。使用水下冲击压实方法,在研磨40小时后,将相当于AlTiAlN30%TiN组成的最终产品研磨粉末固结为块状压块。通过XRD,扫描电子显微镜(SEM),电子探针显微分析(EPMA)和显微硬度测试对研磨后的样品进行表征。该样品具有均匀且细粒度的复合结构,具有99%的理论密度和434 HV0.1的平均显微硬度。结果证实了通过对亚微米级粉末施加冲击压实来制造可靠的整体纳米结构材料的可能性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号