...
首页> 外文期刊>Physical chemistry chemical physics: PCCP >Predicting pressure-dependent unimolecular rate constants using variational transition state theory with multidimensional tunneling combined with system-specific quantum RRK theory: a definitive test for fluoroform dissociation
【24h】

Predicting pressure-dependent unimolecular rate constants using variational transition state theory with multidimensional tunneling combined with system-specific quantum RRK theory: a definitive test for fluoroform dissociation

机译:结合多维隧穿结合变分跃迁状态理论和系统特定量子RRK理论,预测压力相关的单分子速率常数:氟仿解离的确定性测试

获取原文
获取原文并翻译 | 示例
           

摘要

Understanding the falloff in rate constants of gas-phase unimolecular reaction rate constants as the pressure is lowered is a fundamental problem in chemical kinetics, with practical importance for combustion, atmospheric chemistry, and essentially all gas-phase reaction mechanisms. In the present work, we use our recently developed system-specific quantum RRK theory, calibrated by canonical variational transition state theory with small-curvature tunneling, combined with the Lindemann-Hinshelwood mechanism, to model the dissociation reaction of fluoroform (CHF3), which provides a definitive test for falloff modeling. Our predicted pressure-dependent thermal rate constants are in excellent agreement with experimental values over a wide range of pressures and temperatures. The present validation of our methodology, which is able to include variational transition state effects, multidimensional tunneling based on the directly calculated potential energy surface along the tunneling path, and torsional and other vibrational anharmonicity, together with state-of-the-art reaction-path-based direct dynamics calculations, is important because the method is less empirical than models routinely used for generating full mechanisms, while also being simpler in key respects than full master equation treatments and the full reduced falloff curve and modified strong collision methods of Troe.
机译:了解随着压力降低,气相单分子反应速率常数的速率常数的下降是化学动力学中的一个基本问题,对于燃烧,大气化学以及基本上所有的气相反应机理都具有实际意义。在目前的工作中,我们使用我们最近开发的系统特定的量子RRK理论,通过典型的变迁过渡态理论和小曲率隧道校正,并结合Lindemann-Hinshelwood机理,对氟仿(CHF3)的解离反应进行建模。为衰减建模提供了确定的测试。我们预测的与压力有关的热速率常数与在很大的压力和温度范围内的实验值非常吻合。目前我们对方法的验证,该方法能够包括变化的过渡状态效应,基于沿隧道路径直接计算的势能面的多维隧道,扭转和其他振动非谐性以及最新的反应,基于路径的直接动力学计算非常重要,因为该方法的经验性不如通常用于生成完整机构的模型,同时在关键方面也比完整的主方程式处理,完整的降低的衰减曲线和Troe的改进的强碰撞方法更简单。

著录项

相似文献

  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号