...
首页> 外文期刊>Physical chemistry chemical physics: PCCP >The role of sequence in altering the unfolding pathway of an RNA pseudoknot: a steered molecular dynamics study
【24h】

The role of sequence in altering the unfolding pathway of an RNA pseudoknot: a steered molecular dynamics study

机译:序列在改变RNA假结的展开途径中的作用:分子动力学研究

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Mechanical unfolding studies on Ribonucleic Acid (RNA) structures are a subject of tremendous interest as they shed light on the principles of higher order assembly of these structures. Pseudoknotting is one of the most elementary ways in which this higher order assembly is achieved as discrete secondary structural units in RNA are brought in close proximity to form a tertiary structure. Using steered molecular dynamics (SMD) simulations, we have studied the unfolding of five RNA pseudoknot structures that differ from each other either by base substitutions in helices or loops. Our SMD simulations reveal the manner in which a biologically functional RNA pseudoknot unfolds and the effect of changes in the primary structure on this unfolding pathway, providing necessary insights into the driving forces behind the functioning of these structures. We observed that an A -> C mutation in the loop sequence makes the pseudoknot far more resistant against force induced disruption relative to its wild type structure. In contrast to this, a base-pair substitution GC -> AU near the pseudoknot junction region renders it more vulnerable to this disruption. The quantitative estimation of differences in the unfolding paths was carried out using force extension curves, potential of mean force profiles, and the opening of different Watson-Crick and non-Watson-Crick interactions. The results provide a quantified view in which the unfolding paths of the small RNA structures can be used for investigating the programmability of RNA chains for designing RNA switches and aptamers as their biological folding and unfolding could be assessed and manipulated.
机译:核糖核酸(RNA)结构的机械展开研究引起了人们极大的兴趣,因为它们阐明了这些结构的高阶组装原理。伪打结是将RNA中离散的二级结构单元紧密结合形成三级结构的最基本方法之一,可实现更高级别的组装。使用操纵分子动力学(SMD)模拟,我们研究了五个RNA假结结构的展开,这些假结结构由于螺旋或环中的碱基取代而互不相同。我们的SMD模拟揭示了生物学功能性RNA假结展开的方式以及该展开路径中一级结构变化的影响,从而提供了对这些结构功能背后的驱动力的必要见解。我们观察到,环序列中的A→C突变使假结相对于其野生型结构更能抵抗力诱导的破坏。与此相反,假结连接区域附近的碱基对取代GC-> AU使其更容易受到破坏。使用力的延伸曲线,平均力分布的潜力以及不同的Watson-Crick和非Watson-Crick相互作用的开放性,对展开路径的差异进行定量估计。结果提供了量化的观点,其中小RNA结构的展开路径可用于研究RNA链的可编程性,以设计RNA开关和适体,因为可以评估和操纵它们的生物学折叠和展开。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号