...
首页> 外文期刊>Physical chemistry chemical physics: PCCP >Understanding charge transport in non-doped pristine and surface passivated hematite (Fe2O3) nanorods under front and backside illumination in the context of light induced water splitting
【24h】

Understanding charge transport in non-doped pristine and surface passivated hematite (Fe2O3) nanorods under front and backside illumination in the context of light induced water splitting

机译:在光诱导水分解的情况下,了解正面和背面照明下未掺杂的原始和表面钝化的赤铁矿(Fe2O3)纳米棒中的电荷传输

获取原文
获取原文并翻译 | 示例

摘要

Hematite (Fe2O3) nanorods on FTO substrates have been proven to be promising photoanodes for solar fuel production but only with high temperature thermal activation which allows diffusion of tin (Sn) ions fromFTO, eventually enhancing their conductivity. Hence, there is a trade-off between the conductivity of Fe2O3, and the degradation of FTO occurring at high annealing temperatures (>750 degrees C). Here, we present a comprehensive study on undoped Fe2O3 nanorods under front and back illumination to find the optimum annealing temperature. Bulk/surface charge transport efficiency analysis demonstratesminimum bulk recombination indicating overall high quality crystalline Fe2O3 and the preservation of FTO conductivity. Surface recombination is further improved by growing a TiOx overlayer, which improves the photocurrent density from 0.2 mA cm(-2) (backside) to 1.2 mA cm(-2) under front side and 0.8 mA cm(-2) under backside illumination. It is evident from this study that the performance of undoped and unpassivated hematite nanorods is limited by electron transport, whereas that of doped/passivated hematite nanorods is limited by hole transport.
机译:已证明FTO基板上的赤铁矿(Fe2O3)纳米棒是有前途的光阳极,可用于生产太阳能燃料,但仅具有高温热活化功能,这允许锡(Sn)离子从FTO扩散,最终提高其导电性。因此,在高退火温度(> 750摄氏度)下,Fe2O3的电导率与FTO的降解之间需要权衡。在这里,我们对未掺杂的Fe2O3纳米棒进行前后研究,以寻找最佳退火温度。体/表面电荷传输效率分析表明最小的体复合,表明总体上高质量的结晶Fe2O3和FTO导电性的保留。通过生长TiOx覆盖层可以进一步改善表面重组,该覆盖层可以将光电流密度从正面的0.2 mA cm(-2)(背面)提高到正面下方的1.2 mA cm(-2)和背面照明下的0.8 mA cm(-2)。从这项研究中可以明显看出,未掺杂和未钝化的赤铁矿纳米棒的性能受到电子传输的限制,而掺杂/钝化的赤铁矿纳米棒的性能受到空穴传输的限制。

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号