首页> 外文期刊>Physical chemistry chemical physics: PCCP >Illuminating CO2 reduction on frustrated Lewis pair surfaces: investigating the role of surface hydroxides and oxygen vacancies on nanocrystalline In2O3-x(OH)(y)
【24h】

Illuminating CO2 reduction on frustrated Lewis pair surfaces: investigating the role of surface hydroxides and oxygen vacancies on nanocrystalline In2O3-x(OH)(y)

机译:照亮沮丧的Lewis对表面上的二氧化碳还原:研究表面氢氧化物和氧空位在纳米晶In2O3-x(OH)(y)中的作用

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Designing catalytic nanostructures that can thermochemically or photochemically convert gaseous carbon dioxide into carbon based fuels is a significant challenge which requires a keen understanding of the chemistry of reactants, intermediates and products on surfaces. In this context, it has recently been reported that the reverse water gas shift reaction (RWGS), whereby carbon dioxide is reduced to carbon monoxide and water, CO2 + H-2 -> CO + H2O, can be catalysed by hydroxylated indium oxide nanocrystals, denoted In2O3-x(OH)(y), more readily in the light than in the dark. The surface hydroxide groups and oxygen vacancies on In2O3-x(OH)(y) were both shown to assist this reaction. While this advance provides a first step toward the rational design and optimization of a single-component gas-phase CO2 reduction catalyst for solar fuels generation, the precise role of the hydroxide groups and oxygen vacancies in facilitating the reaction on In2O3-x(OH)(y) nanocrystals has not been resolved. In the work reported herein, for the first time we present in situ spectroscopic and kinetic observations, complemented by density functional theory analysis, that together provide mechanistic information into the surface reaction chemistry responsible for the thermochemical and photochemical RWGS reaction. Specifically, we demonstrate photochemical CO2 reduction at a rate of 150 mu mol gcat(-1) hour(-1), which is four times better than the reduction rate in the dark, and propose a reaction mechanism whereby a surface active site of In2O3-x(OH)(y), composed of a Lewis base hydroxide adjacent to a Lewis acid indium, together with an oxygen vacancy, assists the adsorption and heterolytic dissociation of H-2 that enables the adsorption and reaction of CO2 to form CO and H2O as products. This mechanism, which has its analogue in molecular frustrated Lewis pair (FLP) chemistry and catalysis of CO2 and H-2, is supported by preliminary kinetic investigations. The results of this study emphasize the importance of engineering the surfaces of nanostructures to facilitate gas-phase thermochemical and photochemical carbon dioxide reduction reactions to energy rich fuels at technologically significant rates.
机译:设计能够将气态二氧化碳热化学或光化学转化为碳基燃料的催化纳米结构是一项重大挑战,需要对表面反应物,中间体和产物的化学反应有深刻的了解。在这种情况下,最近有报道说,通过将羟基氧化铟纳米晶体催化将二氧化碳还原为一氧化碳和水CO2 + H-2→CO + H2O的反向水煤气变换反应(RWGS)。在黑暗中比在黑暗中更容易表示为In2O3-x(OH)(y)。 In2O3-x(OH)(y)上的表面氢氧化物基团和氧空位均显示有助于该反应。尽管这一进展为合理设计和优化用于太阳能发电的单组分气相二氧化碳还原催化剂迈出了第一步,但氢氧根和氧空位在促进In2O3-x(OH)反应方面的精确作用(y)纳米晶体尚未解析。在本文报道的工作中,我们首次提出了原位光谱和动力学观察,并辅以密度泛函理论分析,共同为负责热化学和光化学RWGS反应的表面反应化学提供了机械信息。具体而言,我们证明了光化学二氧化碳的还原速率为150μmol gcat(-1)hour(-1),这比黑暗中的还原速率高四倍,并提出了一种反应机理,其中In2O3的表面活性中心-x(OH)(y)由与路易斯酸铟相邻的路易斯碱氢氧化物组成,并且具有氧空位,有助于H-2的吸附和杂离解离,从而使CO2吸附和反应以形成CO和H2O为产品。初步的动力学研究支持了这种机制,该机制在分子受阻的路易斯对(FLP)化学中具有类似物,并催化CO2和H-2。这项研究的结果强调了对纳米结构表面进行工程设计以促进气相热化学和光化学二氧化碳还原反应以技术上显着的速率转化为富能燃料的重要性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号