首页> 外文期刊>Physical chemistry chemical physics: PCCP >Separation of benzene from mixtures with water, methanol, ethanol, and acetone: highlighting hydrogen bonding and molecular clustering influences in CuBTC
【24h】

Separation of benzene from mixtures with water, methanol, ethanol, and acetone: highlighting hydrogen bonding and molecular clustering influences in CuBTC

机译:从水,甲醇,乙醇和丙酮的混合物中分离苯:突出氢键和分子团簇对CuBTC的影响

获取原文
获取原文并翻译 | 示例
           

摘要

Configurational-bias Monte Carlo (CBMC) simulations are used to establish the potential of CuBTC for separation of water/benzene, methanol/benzene, ethanol/benzene, and acetone/benzene mixtures. For operations under pore saturation conditions, the separations are in favor of molecules that partner benzene; this is due to molecular packing effects that disfavor benzene. CBMC simulations for adsorption of quaternary water/methanol/ethanol/benzene mixtures show that water can be selectively adsorbed at pore saturation, making CuBTC effective in drying applications. Ideal Adsorbed Solution Theory (IAST) calculations anticipate the right hierarchy of component loadings but the quantitative agreement with CBMC mixture simulations is poor for all investigated mixtures. The failure of the IAST to provide reasonable quantitative predictions of mixture adsorption is attributable to molecular clustering effects that are induced by hydrogen bonding between water-water, methanol-methanol, and ethanol-ethanol molecule pairs. There is, however, no detectable hydrogen bonding between benzene and partner molecules in the investigated mixtures. As a consequence of molecular clustering, the activity coefficients of benzene in the mixtures is lowered below unity by one to three orders of magnitude at pore saturation; such drastic reductions cannot be adequately captured by the Wilson model, that does not explicitly account for molecular clustering. Molecular clustering effects are also shown to influence the loading dependence of the diffusivities of guest molecules.
机译:组态偏置蒙特卡洛(CBMC)仿真用于确定CuBTC在分离水/苯,甲醇/苯,乙醇/苯和丙酮/苯混合物中的潜力。对于在孔隙饱和条件下的操作,分离有利于与苯结合的分子。这是由于分子堆积效应不利于苯。用于季水/甲醇/乙醇/苯混合物吸附的CBMC模拟表明,在孔隙饱和时可以选择性地吸附水,从而使CuBTC在干燥应用中有效。理想吸附溶液理论(IAST)计算可预测正确的组分负载层次,但对于所有研究的混合物,与CBMC混合物模拟的定量一致性均较差。 IAST无法提供对混合物吸附的合理定量预测的原因是分子簇效应,这是由水-水,甲醇-甲醇和乙醇-乙醇分子对之间的氢键引起的。然而,在所研究的混合物中,苯与伙伴分子之间没有可检测到的氢键。由于分子聚集,混合物中苯的活度系数在孔隙饱和时会降低到1以下至1个数量级。这种急剧的减少不能被威尔逊模型充分地捕捉到,这并没有明确说明分子的聚集。还显示了分子簇效应影响客体分子扩散性的负载依赖性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号