...
首页> 外文期刊>Physical chemistry chemical physics: PCCP >Molecular dynamics investigation of separation of hydrogen sulfide from acidic gas mixtures inside metal-doped graphite micropores
【24h】

Molecular dynamics investigation of separation of hydrogen sulfide from acidic gas mixtures inside metal-doped graphite micropores

机译:从掺杂金属的石墨微孔内部的酸性气体混合物中分离硫化氢的分子动力学研究

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The separation of poisonous compounds from various process fluids has long been highly intractable, motivating the present study on the dynamic separation of H2S in acidic-gas-mixture-filled micropores. The molecular dynamics approach, coupled with the isothermal-isochoric ensemble, was used to model the molecular interactions and adsorption of H2S/CO2/CO/H2O mixtures inside metal-doped graphite slits. Due to the difference in the adsorption characteristics between the two distinct adsorbent materials, the metal dopant in the graphitic micropores leads to competitive adsorption, i.e. the Au and graphite walls compete to capture free adsorbates. The effects of competitive adsorption, coupled with changes in the gas temperature, concentration, constituent ratio and slit width on the constituent separation of mixtures were systematically studied. The molecule-wall binding energies calculated in this work (those of H2S, H2O and CO on Au walls and those of H2O, CO and CO2 on graphite walls) show good agreement with those obtained using density functional theory (DFT) and experimental results. The z-directional self-diffusivities (Dz) for adsorbates inside the slit ranged from 10(-9) to 10(-7) m(2) s(-1) as the temperature was increased from 10 to 500 K. The values are comparable with those for a typical microporous fluid (10(-8)-10(-9) m(2) s(-1) in a condensed phase and 10(-6)-10(-7) m(2) s(-1) in the gaseous state). The formation of H-bonding networks and hydrates of H2S is disadvantageous for the separation of mixtures. The results indicate that H2S can be efficiently separated from acidic gas mixtures onto the Au(111) surface by (i) reducing the mole fraction of H2S and H2O in the mixtures, (ii) raising the gas temperature to the high temperature limit (Z400 K), and (iii) lowering the slit width to below the threshold dimension (<= 23.26 angstrom).
机译:长期以来,从各种工艺流体中分离有毒化合物一直是非常棘手的,这推动了对酸性气体混合物填充微孔中H2S动态分离的研究。分子动力学方法,结合等温-等速集成,用于模拟金属掺杂石墨缝隙中H2S / CO2 / CO / H2O混合物的分子相互作用和吸附。由于两种不同的吸附剂材料在吸附特性上的差异,石墨微孔中的金属掺杂剂导致竞争性吸附,即金和石墨壁竞争捕获游离的吸附剂。系统地研究了竞争性吸附的影响,以及气体温度,浓度,组成比和缝隙宽度的变化对混合物组成分离的影响。这项工作中计算出的分子-壁结合能(金壁上的H2S,H2O和CO和石墨壁上的H2O,CO和CO2的能量)与使用密度泛函理论(DFT)和实验结果获得的能量具有良好的一致性。随着温度从10 K升高到500 K,狭缝内被吸附物的z方向自扩散率(Dz)在10(-9)到10(-7)m(2)s(-1)之间。与典型的微孔流体(10(-8)-10(-9)m(2)s(-1)处于冷凝相和10(-6)-10(-7)m(2)具有可比性s(-1)处于气态)。 H键网络和H 2 S水合物的形成对于混合物的分离是不利的。结果表明,通过(i)降低混合物中H2S和H2O的摩尔分数,(ii)将气体温度提高到高温极限(Z400),可以从酸性气体混合物中将H2S有效地分离到Au(111)表面上K),以及(iii)将狭缝宽度降低到阈值尺寸以下(<= 23.26埃)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号