...
首页> 外文期刊>Physical chemistry chemical physics: PCCP >Efficient reduced graphene oxide grafted porous Fe3O4 composite as a high performance anode material for Li-ion batteries
【24h】

Efficient reduced graphene oxide grafted porous Fe3O4 composite as a high performance anode material for Li-ion batteries

机译:高效还原氧化石墨烯接枝多孔Fe3O4复合材料,作为锂离子电池的高性能负极材料

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Here, we report facile fabrication of Fe3O4-reduced graphene oxide (Fe3O4-RGO) composite by a novel approach, i.e., microwave assisted combustion synthesis of porous Fe3O4 particles followed by decoration of Fe3O4 by RGO. The characterization studies of Fe3O4-RG0 composite demonstrate formation of face centered cubic hexagonal crystalline Fe3O4 and homogeneous grafting of Fe3O4 particles by RGO. The nitrogen adsorption-desorption isotherm shows presence of a porous structure with a surface area and a pore volume of 81.67 m~2 g~(-1), and 0.106 cm~3 g~(-1) respectively. Raman spectroscopic studies of Fe3O4-RGO composite confirm the existence of graphitic carbon. Electrochemical studies reveal that the composite exhibits high reversible Li-ion storage capacity with enhanced cycle life and high coulombic efficiency. The Fe3O4-RGO composite showed a reversible capacity ~612, 543, and ~446 mA h g~(-1) at current rates of 1 C, 3 C and 5 C, respectively, with a coulombic efficiency of 98% after 50 cycles, which is higher than graphite, and Fe3O4-carbon composite. The cyclic voltammetry experiment reveals the irreversible and reversible Li-ion storage in Fe3O4-RGO composite during the starting and subsequent cycles. The results emphasize the importance of our strategy which exhibited promising electrochemical performance in terms of high capacity retention and good cycling stability. The synergistic properties, (i) improved ionic diffusion by porous Fe3O4 particles with a high surface area and pore volume, and (ii) increased electronic conductivity by RGO grafting attributed to the excellent electrochemical performance of Fe3O4, which make this material attractive to use as anode materials for lithium ion storage.
机译:在这里,我们报道了通过一种新颖的方法,即微波辅助燃烧合成多孔Fe3O4颗粒,然后通过RGO装饰Fe3O4,轻松制造了Fe3O4还原的氧化石墨烯(Fe3O4-RGO)复合材料。 Fe3O4-RG0复合材料的表征研究表明,面心立方立方六方晶态Fe3O4的形成和RGO均匀地接枝了Fe3O4颗粒。氮吸附-解吸等温线显示存在多孔结构,其表面积和孔体积分别为81.67 m〜2 g〜(-1)和0.106 cm〜3 g〜(-1)。 Fe3O4-RGO复合材料的拉曼光谱研究证实了石墨碳的存在。电化学研究表明,该复合材料显示出高可逆的锂离子存储容量,并具有更长的循环寿命和高库仑效率。 Fe3O4-RGO复合材料在1 C,3 C和5 C的电流速率下分别显示出可逆容量〜612、543和〜446 mA hg〜(-1),在50个循环后的库仑效率为98%,它比石墨和Fe3O4-碳复合材料高。循环伏安法实验揭示了在开始和随后的循环中,Fe3O4-RGO复合材料中不可逆和可逆的锂离子存储。结果强调了我们的策略的重要性,该策略在高容量保持性和良好的循环稳定性方面表现出令人鼓舞的电化学性能。协同性能,(i)具有高表面积和孔体积的多孔Fe3O4颗粒改善了离子扩散,并且(ii)RGO接枝提高了电导率,这归因于Fe3O4出色的电化学性能,使该材料具有广泛的用途。用于锂离子存储的负极材料。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号