...
首页> 外文期刊>Physical chemistry chemical physics: PCCP >Enhancing the electrochemical kinetics of high voltage olivine LiMnPO4 by isovalent co-doping
【24h】

Enhancing the electrochemical kinetics of high voltage olivine LiMnPO4 by isovalent co-doping

机译:通过等价共掺杂增强高压橄榄石LiMnPO4的电化学动力学

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

We report here doping of Fe~(2+) and/or Mg~(2+) in LiMnPO4 cathode material to enhance its lithium storage performance and appraise the effect of doping. For this purpose, LiMn_(0.9)Fe_(0.1-x)Mg_XPO4/C (x = 0 and 0.05) and LiMn_(0.9)Mg_(0.05)PO4/C have been prepared by a ball mill assisted soft template method. These materials were prepared with similar morphology, particle size and carbon content. Amongst them, the isovalent co-doped LiMn_(0.9)Fe_(0.05)Mg_(0.05)PO4/C sample shows better electrochemical performance compared to LiMn_(0.9)Fe_(0.1)PO4/C and LiMn_(0.95)Mg_(0.05)PO4/C samples. For instance, a lithium storage capacity of 159 mA h g~(-1) is obtained at 0.1 C for LiMn_(0.9)Fe_(0.05)Mg__(0.05)PO4/C material with a relatively low polarization of ~139 mV. This is in sharp contrast to LiMn_(0.9)Fe_(0.1)PO4/C and LiMn_(0.9)Fe_(0.05)PO4/C which show only 136.8 and 128.4 mA h g~(-1) at 0.1 C with the polarization of ~222 and 334 mV respectively. Further, the LiMn_(0.9)Fe_(0.05)Mg__(0.05)PO4/C electrode delivers discharge capacities of 155.8, 141.4, 118.8,104.6, 81.4 and 51.8 mA h g~(-1) at 0.2, 0.5, 1,2,5 and 10 C respectively. This electrode material also retains a capacity of 116 mA h g~(-1) at 1 C after 200 cycles, which is 96% of its initial capacity. Such improved cycling stability of LiMn_(0.9)Fe_(0.05)Mg__(0.05)PO4/C is attributed to the suppressed Mn dissolution in the electrolyte compared to the other samples. Further, during the Li extraction process, delithiated phases created from the Fe~(2+)/Fe~(3+) redox reaction (~3.45 V) favor enhanced electrochemical activity of the succeeding Mn~(2+)/Mn~(3+) redox couples. The fully charged state (4.6 V) contains a partially lithiated phase owing to the presence of electrochemically inactive Mg~(2+). The presence of such lithiated phase provides a favourable environment for the subsequent lithium insertion process. We also observe improved electronic conductivity and Li-ion diffusion for the co-doped sample compared to LiMnPO4 doped with either Fe~(2+) or Mg~(2+) by impedance measurements. The improved storage performance of co-doped LiMnPO4 is thus explained in terms of (i) favorable extraction and insertion reactions and (ii) enhanced transport properties.
机译:我们在这里报告了在LiMnPO4正极材料中掺杂Fe〜(2+)和/或Mg〜(2+),以增强其锂存储性能并评估掺杂效果。为此,已经通过球磨机辅助软模板法制备了LiMn_(0.9)Fe_(0.1-x)Mg_XPO4 / C(x = 0和0.05)和LiMn_(0.9)Mg_(0.05)PO4 / C。这些材料的制备具有相似的形态,粒度和碳含量。其中,等价共掺杂LiMn_(0.9)Fe_(0.05)Mg_(0.05)PO4 / C样品的电化学性能优于LiMn_(0.9)Fe_(0.1)PO4 / C和LiMn_(0.95)Mg_(0.05) PO4 / C样品。例如,对于极化强度较低的〜139 mV的LiMn_(0.9)Fe_(0.05)Mg __(0.05)PO4 / C材料,在0.1 C下可获得159 mA h g〜(-1)的锂存储容量。这与LiMn_(0.9)Fe_(0.1)PO4 / C和LiMn_(0.9)Fe_(0.05)PO4 / C形成鲜明对比,LiMn_(0.9)Fe_(0.05)PO4 / C在0.1 C时仅显示136.8和128.4 mA hg〜(-1),极化为〜分别为222和334 mV。此外,LiMn_(0.9)Fe_(0.05)Mg __(0.05)PO4 / C电极在0.2、0.5、1,2, 5℃和10℃。该电极材料在200次循环后在1 C下也保持116 mA h g〜(-1)的容量,这是其初始容量的96%。 LiMn_(0.9)Fe_(0.05)Mg __(0.05)PO4 / C的这种改善的循环稳定性归因于与其他样品相比,Mn在电解质中的溶解受到抑制。此外,在锂的提取过程中,由Fe〜(2 +)/ Fe〜(3+)氧化还原反应(〜3.45 V)产生的脱锂相有利于后续Mn〜(2 +)/ Mn〜( 3+)氧化还原对。由于存在电化学惰性Mg〜(2+),充满电的状态(4.6 V)包含部分锂化的相。这种锂化相的存在为随后的锂插入过程提供了有利的环境。通过阻抗测量,与掺杂有Fe〜(2+)或Mg〜(2+)的LiMnPO4相比,我们还观察到共掺杂样品的电子电导率和锂离子扩散得到改善。因此,通过(i)有利的萃取和插入反应和(ii)增强的传输性能来解释共掺杂的LiMnPO 4的改善的存储性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号