首页> 外文期刊>Physical chemistry chemical physics: PCCP >A first principles study of water oxidation catalyzed by a tetraruthenium-oxo core embedded in polyoxometalate ligands
【24h】

A first principles study of water oxidation catalyzed by a tetraruthenium-oxo core embedded in polyoxometalate ligands

机译:嵌入多金属氧酸盐配体中的四钌-氧核心催化水氧化的第一原理研究

获取原文
获取原文并翻译 | 示例
           

摘要

We present a computational study addressing the catalytic cycle of a recently-synthesized all-inorganic homogeneous catalyst capable to promote water oxidation with low overpotential and high turnover frequency [Sartorel et ah, J. Am. Chem. Soc, 2008, 130, 5006; Geletii et al., Angew. Chem., Int. Ed., 2008, 47, 3896]. This catalyst consists of a tetraruthenium-oxo core [Ru_4O_4(OH)_2·(H_2O)_4]~(6+) capped by two polyoxometalate [SiW_(10)O_(36)]~(8-) units. The reaction mechanism underpinning its efficiency is currently under debate. We study a reaction cycle involving four consecutive proton-coupled electron transfer (PCET) processes that successively oxidize the four Ru~(IV)-H_2O units of the initial state (S_0) to the four Ru~v-OH centers of the activated intermediate (S_4). The energetics of these electrochemical processes as well as the structural and electronic properties of the reaction intermediates are studied with ab initio Density Functional Theory (DFT) calculations. After characterizing these reaction intermediates in the gas phase, we show that the solvated tetraruthenate core undergoes a solvent-induced structural distortion that brings the predicted molecular geometry to excellent agreement with the experimental X-ray diffraction data. The calculated electronic properties of the catalyst are instead weakly dependent on the presence of the solvent. The frontier orbitals of the initial state as well as the electronic states involved in the PCET steps are shown to be localized on the tetraruthenium-oxo core. The reaction thermodynamics predicted for the intermediate reaction steps is in good agreement with the available cyclic voltammetry measurements up to S_3, but the calculated free energy difference between the initial and the activated state (S_0/S_4) turns out to be significantly lower than the thermodynamic limit for water oxidation. Since the oxidizing power of the S_0/S_4 couple is not sufficient to split water, we suggest that promoting this reaction would require cycling between higher oxidation states.
机译:我们提出了针对最近合成的全无机均相催化剂的催化循环的计算研究,所述全无机均相催化剂能够以低超电势和高周转频率促进水氧化[Sartorel等人,J.Am.Chem.Soc。,1993,48,2257]。化学SOC,2008,130,5006; Geletii等,Angew。 Chem。,Int。 Ed。,2008,47,3896]。该催化剂由被两个多金属氧酸盐[SiW_(10)O_(36)]〜(8-)单元封端的四钌-氧代核[Ru_4O_4(OH)_2·(H_2O)_4]〜(6+)组成。目前正在争论支持其效率的反应机制。我们研究了一个涉及四个连续的质子偶联电子转移(PCET)过程的反应周期,该过程将初始状态(S_0)的四个Ru〜(IV)-H_2O单元依次氧化为活化中间体的四个Ru〜v-OH中心(S_4)。通过从头算密度泛函理论(DFT)计算,研究了这些电化学过程的能量以及反应中间体的结构和电子性质。在表征了气相中的这些反应中间体之后,我们表明溶剂化的四钌酸酯核经历了溶剂诱导的结构变形,使预测的分子几何形状与实验X射线衍射数据极为吻合。所计算出的催化剂的电子性质取而代之地弱依赖于溶剂的存在。初始状态的边界轨道以及PCET步骤所涉及的电子状态显示为位于四钌-氧代核上。预测中间反应步骤的反应热力学与直至S_3的可用循环伏安法测量结果高度吻合,但计算得出的初始状态和激活状态之间的自由能差(S_0 / S_4)明显低于热力学水氧化极限。由于S_0 / S_4对的氧化能力不足以分解水,因此我们建议促进该反应将需要在较高氧化态之间循环。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号