首页> 外文期刊>Organometallics >Hydrosilylation of Terminal Alkynes Catalyzed by a ONO-Pincer Iridium(III) Hydride Compound: Mechanistic Insights into the Hydrosilylation and Dehydrogenative Silylation Catalysis
【24h】

Hydrosilylation of Terminal Alkynes Catalyzed by a ONO-Pincer Iridium(III) Hydride Compound: Mechanistic Insights into the Hydrosilylation and Dehydrogenative Silylation Catalysis

机译:ONO-品位铱(III)氢化物催化的末端炔烃的氢化硅烷化:对氢化硅烷化和脱氢硅烷化催化的机理研究

获取原文
获取原文并翻译 | 示例
           

摘要

The catalytic activity in the hydrosilylation of terminal alkynes by the unsaturated hydrido iridium(III) compound [IrH(kappa(3)-hqca)(coe)] (1), which contains the rigid asymmetrical dianionic ONO pincer ligand 8-oxidoquinoline-2-carboxylate, has been studied. A range of aliphatic and aromatic 1-alkynes has been efficiently reduced using various hydrosilanes. Hydrosilylation of the linear 1-alkynes hex-1-yne and oct-1-yne gives a good selectivity toward the beta-(Z)-vinylsilane product, while for the bulkier t-Bu-C CH a reverse selectivity toward the beta-(E)-vinylsilane and significant amounts of alkene, from a competitive dehydrogenative silylation, has been observed. Compound 1, unreactive toward silanes, reacts with a range of terminal alkynes RC CH, affording the unsaturated eta(1)-alkenyl complexes [Ir(kappa(3)-hqca)(E-CH=CHR)(coe)] in good yield. These species are able to coordinate monodentate neutral ligands such as PPh3 and pyridine, or CO in a reversible way, to yield octahedral derivatives. Further mechanistic aspects of the hydrosilylation process have been studied by DFT calculations. The catalytic cycle passes through Ir(III) species with an iridacyclopropene (eta(2)-vinylsilane) complex as the key intermediate. It has been found that this species may lead both to the dehydrogenative silylation products, via a beta-elimination process, and to a hydrosilylation cycle. The beta-elimination path has a higher activation energy than hydrosilylation. On the other hand, the selectivity to the vinylsilane hydrosilylation products can be accounted for by the different activation energies involved in the attack of a silane molecule at two different faces of the iridacyclopropene ring to give eta(1)-vinylsilane complexes with either an E or Z configuration. Finally, proton transfer from a eta(2)-silane to a eta(1)-vinylsilane ligand results in the formation of the corresponding beta-(Z)- and beta-(E)-vinylsilane isomers, respectively.
机译:不饱和氢化铱(III)化合物[IrH(kappa(3)-hqca)(coe)](1)的末端炔烃氢化硅烷化中的催化活性(1),其中包含刚性不对称双阴离子ONO夹钳配体8-氧化喹啉-2 -羧酸盐,已经被研究。使用各种氢硅烷可有效减少一系列脂族和芳族1-炔烃。线性1-炔烃己-1-炔和辛-1-炔的氢化硅烷化对β-(Z)-乙烯基硅烷产物具有良好的选择性,而对于较大的t-Bu-C CH而言,对β-(Z)-乙烯基的反向选择性已经观察到(E)-乙烯基硅烷和大量的烯烃,它们来自竞争性脱氢甲硅烷基化。对硅烷没有反应性的化合物1与一系列末端炔烃RC CH反应,从而得到不饱和的eta(1)-烯基络合物[Ir(kappa(3)-hqca)(E-CH = CHR)(coe)]让。这些物质能够以可逆的方式配位单齿中性配体(例如PPh3和吡啶或CO),以生成八面体衍生物。通过DFT计算已经研究了氢化硅烷化过程的其他机理。催化循环通过Ir(III)物种,其中iridacyclopropene(eta(2)-乙烯基硅烷)配合物为关键中间体。已经发现,该物种既可以通过β-消除过程导致脱氢甲硅烷基化产物,又可以导致氢化硅烷化循环。 β-消除路径比氢化硅烷化具有更高的活化能。另一方面,对乙烯基硅烷氢化硅烷化产物的选择性可以通过硅烷分子在iridacyclopropene环的两个不同面上进攻以得到具有E的eta(1)-乙烯基硅烷配合物的不同活化能来解释。或Z配置。最后,质子从eta(2)-硅烷转移到eta(1)-乙烯基硅烷配体会导致相应的β-(Z)-和β-(E)-乙烯基硅烷异构体的形成。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号