首页> 外文期刊>RSC Advances >A facile low temperature route to deposit a TiO2 scattering layer for efficient dye-sensitized solar cells
【24h】

A facile low temperature route to deposit a TiO2 scattering layer for efficient dye-sensitized solar cells

机译:简便的低温路线来沉积TiO2散射层,以实现高效的染料敏化太阳能电池

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Herein, we demonstrate a facile low temperature chemical bath deposition approach to deposit a light scattering layer on a nanostructured mesoporous TiO2 bottom layer in a dye-sensitized solar cell architecture. Large TiO2 nanoparticles were formed on the top surface of photoanode electrodes via hydrolysis of TiCl4 at 70 degrees C. We controlled the size and agglomeration of these TiO2 nanoparticles by altering the concentration of TiCl4 in the chemical bath during the hydrolysis process. Electron microscope images revealed that mono-dispersed scattering particles having uneven surfaces with diameters between 100 to 300 nm formed on the mesoporous titania layer. The scattering behavior of the formed titania overlayer was confirmed by the improved reflectance in the diffuse reflectance spectrum of the films. We also observed a significant improvement in the density of states near the band-edge of titania for the TiCl4 treated electrodes as well as a considerable decline in the sub-band gap absorption states. Consequentially, enhancement in the photovoltaic parameters of TiCl4 treated based solar cells is achieved which led to a power conversion efficiency of 8.54% for the cell having an optimum content of large titania particles on the top surface compared to 7.10% for the pristine titania based solar cell.
机译:在这里,我们展示了一种简便的低温化学浴沉积方法,可以在染料敏化太阳能电池结构的纳米结构介孔TiO2底层上沉积光散射层。在70摄氏度下通过TiCl4的水解在光阳极电极的上表面形成了较大的TiO2纳米颗粒。我们通过改变水解过程中化学浴中TiCl4的浓度来控制这些TiO2纳米颗粒的大小和团聚。电子显微镜图像显示,在介孔二氧化钛层上形成了具有不平坦表面的直径为100至300nm的单分散散射颗粒。通过改善膜的漫反射光谱中的反射率,可以确认所形成的二氧化钛覆盖层的散射行为。我们还观察到TiCl4处理过的电极在二氧化钛的带边附近的态密度有了显着提高,并且子带隙吸收态也有明显下降。因此,实现了TiCl4处理的太阳能电池的光伏参数的提高,这导致顶表面具有最佳二氧化钛颗粒最佳含量的电池的功率转换效率为8.54%,而原始的二氧化钛为7.10%细胞。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号