...
首页> 外文期刊>Langmuir: The ACS Journal of Surfaces and Colloids >Numerical Study of Vapor Condensation on Patterned Hydrophobic Surfaces Using the String Method
【24h】

Numerical Study of Vapor Condensation on Patterned Hydrophobic Surfaces Using the String Method

机译:弦法数值化疏水表面上蒸汽凝结的数值研究

获取原文
获取原文并翻译 | 示例

摘要

Vapor condensation on solid surfaces plays a crucial role across a wide range of industrial applications. Recent advances of nanotechnology have made possible the manipulation of the condensation process through the control of surface structures. In this work, we study vapor condensation on hydrophobic surfaces patterned with microscale pillars. The critical nuclei, the activation barriers, and the minimum energy paths are computed using the climbing string method. The effects of pillar height, interpillar spacing, the level of supersaturation, and the intrinsic wettability of the solid surface on the nucleation process are investigated. Two nucleation scenarios are obtained from the computation. In the case of high pillar, narrow interpillar spacing, low supersaturation, and/or low surface wettability, the critical nucleus prefers the suspended Cassie state; otherwise, it prefers the impaled Wenzel state. A comparison of the nucleation barrier with that on a flat surface of the same material reveals that vapor condensation is inhibited by the microstructures in the former case, while enhanced in the latter case. The critical values of the pillar height, the interpillar spacing, and the supersaturation at which the critical nucleus changes from the Cassie state to the Wenzel state are identified from the phase diagram of the critical nucleus. It is found that the dependence of the critical interpillar spacing on the supersaturation follows closely the curve of the critical radii in a homogeneous nucleation. The relaxation dynamics of the condensate after the critical nucleus is formed is computed by solving the steepest descent equation. It is observed that when the pillar is low and/or the interpillar spacing is wide, a condensate initially in the Cassie state may evolve into the Wenzel state during the relaxation.
机译:固体表面上的蒸汽凝结在广泛的工业应用中起着至关重要的作用。纳米技术的最新进展使得通过控制表面结构来控制缩合过程成为可能。在这项工作中,我们研究了用微型柱构图的疏水性表面上的水汽凝结。临界核,激活势垒和最小能量路径是使用爬升弦法计算的。研究了立柱高度,柱间间距,过饱和水平和固体表面的固有润湿性对成核过程的影响。从计算中获得两个成核情况。在高支柱,窄的柱间间距,低的过饱和度和/或低的表面可湿性的情况下,临界核倾向于悬浮的卡西态。否则,它倾向于采用封闭的Wenzel状态。将成核屏障与相同材料的平坦表面上的成核屏障的比较显示,在前一种情况下,蒸汽凝结被微结构抑制,而在后一种情况下,凝结得到了增强。从临界核的相图确定了临界高度的临界值,柱间间距以及临界核从卡西状态变为温泽尔状态的过饱和度。已经发现,临界柱间间距对过饱和度的依赖性紧随均匀成核过程中临界半径的曲线。通过求解最速下降方程,可以计算出临界核形成后凝结水的弛豫动力学。可以观察到,当支柱较低和/或柱间间距较宽时,最初处于卡西状态的凝结水在松弛过程中可能演变为温泽尔状态。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号