...
首页> 外文期刊>Langmuir: The ACS Journal of Surfaces and Colloids >Influence of Surface Topography on the Interactions between Nanostructured Hydrophobic Surfaces
【24h】

Influence of Surface Topography on the Interactions between Nanostructured Hydrophobic Surfaces

机译:表面形貌对纳米结构疏水表面之间相互作用的影响

获取原文
获取原文并翻译 | 示例
           

摘要

Nanostructured particle coated surfaces, with hydrophobized particles arranged in close to hexagonal order and of specific diameters ranging from 30 nm up to 800 nm, were prepared by Langmuir?Blodgett deposition followed by silanization. These surfaces have been used to study interactions between hydrophobic surfaces and a hydrophobic probe using the AFM colloidal probe technique. The different particle coated surfaces exhibit similar water contact angles, independent of particle size, which facilitates studies of how the roughness length scale affects capillary forces (previously often referred to as "hydrophobic interactions") in aqueous solutions. For surfaces with smaller particles (diameter < 200 nm), an increase in roughness length scale is accompanied by a decrease in adhesion force and bubble rupture distance. It is suggested that this is caused by energy barriers that prevent the motion of the three-phase (vapor/liquid/solid) line over the surface features, which counteracts capillary growth. Some of the measured force curves display extremely long-range interaction behavior with rupture distances of several micrometers and capillary growth with an increase in volume during retraction. This is thought to be a consequence of nanobubbles resting on top of the surface features and an influx of air from the crevices between the particles on the surface.
机译:通过Langmuir?Blodgett沉积,然后进行硅烷化处理,制备了纳米结构的颗粒涂层表面,疏水颗粒的排列接近六边形,比直径范围为30 nm至800 nm。这些表面已被用于使用AFM胶体探针技术研究疏水表面与疏水探针之间的相互作用。不同的颗粒涂覆表面表现出相似的水接触角,而与颗粒大小无关,这有助于研究粗糙度长度尺度如何影响水溶液中的毛细作用力(以前通常称为“疏水相互作用”)。对于具有较小颗粒(直径<200 nm)的表面,粗糙度长度比例的增加伴随着粘合力和气泡破裂距离的减小。建议这是由于能垒阻止了三相(蒸气/液体/固体)线在表面特征上的运动而阻止了毛细管的生长。一些测得的力曲线显示了极长距离的相互作用行为,断裂距离为几微米,毛细管生长时在缩回过程中体积增加。认为这是由于纳米气泡停留在表面特征的顶部,以及空气从表面颗粒之间的缝隙涌入的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号