首页> 外文期刊>Langmuir: The ACS Journal of Surfaces and Colloids >Coupled concentration polarization and electroosmotic circulation near microanointerfaces: Taylor-Aris model of hydrodynamic dispersion and limits of its applicability
【24h】

Coupled concentration polarization and electroosmotic circulation near microanointerfaces: Taylor-Aris model of hydrodynamic dispersion and limits of its applicability

机译:微/纳米界面附近的耦合浓度极化和电渗循环:流体动力扩散的泰勒-阿里斯模型及其适用范围

获取原文
获取原文并翻译 | 示例
       

摘要

Mismatches in electrokinetic properties between micro- and nanochannels give rise to superposition of electroosmotic and pressure-driven flows in the microchannels. Parabolic or similar flow profiles are known to cause the so-called hydrodynamic dispersion, which under certain conditions can be formally assimilated to an increase in the solute diffusivity (Taylor-Aris model). It is demonstrated theoretically that taking into account these phenomena modifies considerably the pattern of current-induced concentration polarization of microanointerfaces as compared to the classical model of unstirred boundary layer. In particular, the hydrodynamic dispersion leads to disappearance of limiting current. At essentially "over-limiting" current densities, the time-dependent profiles of salt concentration in microchannels behave like sharp concentration "fronts" moving away from the interface until they reach the reservoir end of the microchannel. Under galvanostatic conditions postulated in this study, these "fronts" move with practically constant speed directly proportional to the current density. The sharp transition from a low-concentration to a high-concentration zone can be useful for the analyte preconcentration via stacking. The pattern of moving sharp concentration "fronts" has been predicted for the first time for relatively broad microchannels with negligible surface conductance. The Taylor-Aris approach to the description of hydrodynamic dispersion is quantitatively applicable only to the analysis of sufficiently "slow" processes (as compared to the characteristic time of diffusion relaxation in the transversal direction). A posteriori estimates reveal that the condition of "slow" processes is typically not satisfied close to current-polarized microanointerfaces. Accordingly, to make the description quantitative, one needs to go beyond the Taylor-Aris approximation, which will be attempted in future studies. It is argued that doing so would make even stronger the dampening impact of hydrodynamic dispersion on the current-induced concentration polarization of microanointerfaces.
机译:微通道和纳米通道之间的电动特性不匹配,导致微通道中电渗流和压力驱动流的叠加。已知抛物线或类似的流动剖面会引起所谓的流体动力分散,在某些条件下可以将其形式上吸收为溶质扩散系数的增加(Taylor-Aris模型)。从理论上证明,与经典的非搅拌边界层模型相比,考虑到这些现象,极大地改变了电流诱导的微/纳米界面浓度极化的模式。特别地,流体动力分散导致极限电流的消失。在基本上“过度限制”的电流密度下,微通道中盐浓度随时间的变化曲线表现得像尖锐的浓度“前沿”一样,从界面移开,直到它们到达微通道的储层端。在本研究假设的恒电流条件下,这些“前沿”以几乎与电流密度成正比的几乎恒定的速度运动。从低浓度区域到高浓度区域的急剧转变对于通过堆叠进行分析物预浓缩很有用。首次针对具有可忽略的表面电导的相对较宽的微通道,首次预测了浓度急剧增加的“前沿”模式。描述流体动力扩散的泰勒-阿里斯方法仅在定量上适用于分析足够“缓慢”的过程(与横向扩散扩散的特征时间相比)。后验估计表明,在电流极化的微/纳米界面附近,通常无法满足“慢速”过程的条件。因此,为了使描述具有定量性,需要超越泰勒-阿里斯(Taylor-Aris)近似,这将在以后的研究中尝试。有人认为,这样做将使水动力分散对电流引起的微/纳米界面浓度极化的阻尼作用更加强烈。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号