首页> 外文期刊>Langmuir: The ACS Journal of Surfaces and Colloids >Wetting and spreading of nanofluids on solid surfaces driven by the structural disjoining pressure: Statics analysis and experiments
【24h】

Wetting and spreading of nanofluids on solid surfaces driven by the structural disjoining pressure: Statics analysis and experiments

机译:结构解体压力驱动下的纳米流体在固体表面上的润湿和扩散:静力学分析和实验

获取原文
获取原文并翻译 | 示例
           

摘要

The wetting and spreading of nanofluids composed of liquid suspensions of nanoparticles have significant technological applications. Recent studies have revealed that, compared to the spreading of base liquids without nanoparticles, the spreading of wetting nanofluids on solid surfaces is enhanced by the structural disjoining pressure. Here, we present our experimental observations and the results of the statics analysis based on the augmented Laplace equation (which takes into account the contribution of the structural disjoining pressure) on the effects of the nanoparticle concentration, nanoparticle size, contact angle, and drop size (i.e., the capillary and hydrostatic pressure); we examined the effects on the displacement of the drop-meniscus profile and spontaneous spreading of a nanofluid as a film on a solid surface. Our analyses indicate that a suitable combination of the nanoparticle concentration, nanoparticle size, contact angle, and capillary pressure can result not only in the displacement of the three-phase contact line but also in the spontaneous spreading of the nanofluid as a film on a solid surface. We show here, for the first time, that the complete wetting and spontaneous spreading of the nanofluid as a film driven by the structural disjoining pressure gradient (arising due to the nanoparticle ordering in the confined wedge film) is possible by decreasing the nanoparticle size and the interfacial tension, even at a nonzero equilibrium contact angle. Experiments were conducted on the spreading of a nanofluid composed of 5, 10, 12.5, and 20 vol % silica suspensions of 20 nm (geometric diameter) particles. A drop of canola oil was placed underneath the glass surface surrounded by the nanofluid, and the spreading of the nanofluid was monitored using an advanced optical technique. The effect of an electrolyte, such as sodium chloride, on the nanofluid spreading phenomena was also explored. On the basis of the experimental results, we can conclude that a nanofluid with an effective particle size (including the electrical double layer) of about 40 nm, a low equilibrium contact angle (<3°), and a high effective volume concentration (>30 vol %) is desirable for the dynamic spreading of a nanofluid system with an interfacial tension of 0.5 mN/m. Our experimental observations also validate the major predications of our theoretical analysis.
机译:由纳米颗粒的液体悬浮液组成的纳米流体的润湿和扩散具有重要的技术应用。最近的研究表明,与没有纳米颗粒的基础液体的散布相比,润湿的纳米流体在固体表面上的散布由于结构解体压力而得到增强。在这里,我们介绍了我们的实验观察结果以及基于增强的拉普拉斯方程(考虑了结构解体压力的贡献)的静态分析结果,这些结果对纳米粒子浓度,纳米粒子尺寸,接触角和液滴尺寸的影响(即毛细管压力和静水压力);我们研究了对液滴弯月形轮廓的位移和纳米流体在固体表面上自发散布的影响。我们的分析表明,纳米颗粒浓度,纳米颗粒大小,接触角和毛细管压力的适当组合不仅会导致三相接触线的位移,而且还会导致纳米流体以薄膜形式自发散布在固体上表面。我们首次在这里表明,通过减小纳米粒子的尺寸和尺寸,可以通过结构解体压力梯度(由于受限楔形薄膜中的纳米粒子有序排列)而驱动的薄膜完全润湿和自发扩散。即使在非零平衡接触角下,界面张力也是如此。对由5、10、12.5和20 vol%的20 nm(几何直径)颗粒的二氧化硅悬浮液组成的纳米流体的铺展进行了实验。将一滴芥花籽油放置在被纳米流体包围的玻璃表面下方,并使用先进的光学技术监测纳米流体的扩散。还研究了诸如氯化钠之类的电解质对纳米流体扩散现象的影响。根据实验结果,我们可以得出结论,纳米流体的有效粒径(包括电双层)约为40 nm,平衡接触角低(<3°),有效体积浓度高(>对于界面张力为0.5mN / m的纳米流体系统的动态铺展而言,理想的是30vol%。我们的实验观察也验证了我们理论分析的主要预测。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号