首页> 外文期刊>Langmuir: The ACS Journal of Surfaces and Colloids >EXAFS and HRTEM Evidence for As(III)-Containing Surface Precipitates on Nanocrystalline Magnetite: Implications for As Sequestration
【24h】

EXAFS and HRTEM Evidence for As(III)-Containing Surface Precipitates on Nanocrystalline Magnetite: Implications for As Sequestration

机译:纳米晶磁铁矿上含As(III)的表面沉淀物的EXAFS和HRTEM证据:对砷固存的影响

获取原文
获取原文并翻译 | 示例
       

摘要

Arsenic sorption onto iron oxide spinels such as magnetite could contribute to immobilization of arsenite (AsO33-), the reduced, highly toxic form of arsenic in contaminated anoxic ground waters, as well as to putative remediation processes. Nanocrystalline magnetite (< 20 nm) is known to exhibit higher efficiency for arsenite sorption than larger particles, sorbing as much as similar to 20 mu mol/m(2) of arsenite. To improve our understanding of this process, we investigated the molecular level structure of As(III)-containing sorption products on two types of fine-grained magnetite: (1) a biogenic one with ill average particle diameter of 34 nm produced by reduction of lepidocrocite (gamma-FeOOH) by Shewanella putrefaciens and (2) a synthetic, abiotic, nanocrystalline magnetite with,it) average particle diameter of 11 nm. Results from extended X-ray absorption spectroscopy (EXAFS) for both types of magnetite with As(III) surface coverages of up to 5 mu mol/m(2) indicate that As(III) forms dominantly inner-sphere, tridentate, hexanuclear, corner-sharing surface complexes (C-3) in which AsO3 pyramids occupy vacant tetrahedral sites oil octahedrally terminated {111}surfaces of magnetite. Formation of this type of surface complex results in a decrease in dissolved As(III) concentration below file maximum concentration level recommended by the World Health Organization (10 mu g/L), which corresponds to As(III) surface coverages of 0.16 and 0.19 mu mol/m(2) in our experiments. In addition, high-resolution transmission electron microscopy (HRTEM) coupled with energy dispersive X-ray spectroscopy (EDXS) analyses revealed the occurrence of an amorphous As(III)-rich surface precipitate forming at As(III) Surface coverages as low as 1.61 mu mol/m(2). This phase hosts the majority of adsorbed arsenite at surface coverages exceeding the theoretical maximum site density of vacant tetrahedral sites on the magnetite {111} surface (3.2 sitesm(2) or 5.3 mu mol/m(2)). This finding helps to explain the exceptional As(III) sorption capacity of nanocrystalline magnetite particles ( > 10 mu mol/m(2)). However, the higher solubility of the amorphous surface precipitate compared to the C-3 surface complexes causes a dramatic increase of dissolved As concentration for coverages above 1.9 mu mol/m(2).
机译:砷吸附在氧化铁尖晶石(如磁铁矿)上可能有助于固定砷(AsO33-),在受污染的缺氧地下水中还原的高毒性砷形式,以及可能的修复方法。已知纳米晶磁铁矿(<20 nm)比大颗粒具有更高的砷吸附效率,其吸附量与砷的20μmol / m(2)相似。为了提高我们对这一过程的理解,我们研究了两种类型的细粒磁铁矿上含As(III)的吸附产物的分子水平结构:(1)一种生物成因,其平均粒径降低了34 nm,产生的希瓦氏菌(Shewanella putrefaciens)的锂铁云母石(γ-FeOOH)和(2)合成的非生物纳米晶磁铁矿,其平均粒径为11 nm。两种类型磁铁矿的扩展X射线吸收光谱(EXAFS)结果显示,As(III)表面覆盖率高达5μmol / m(2),表明As(III)主要形成内球,三齿,六核,角共享表面复合物(C-3),其中AsO3金字塔占据了空的四面体位点,八面体末端的磁铁矿{111}表面为油。这种表面复合物的形成导致溶解的As(III)浓度降低到世界卫生组织建议的文件最大浓度水平以下(10μg / L),这对应于As(III)的表面覆盖率分别为0.16和0.19在我们的实验中为mol / m(2)。此外,高分辨率透射电子显微镜(HRTEM)结合能量色散X射线光谱(EDXS)分析显示,在As(III)表面形成的非晶态富As(III)表面沉淀的形成低至1.61 μmol / m(2)。该相在表面覆盖率范围内占据了大部分吸附的亚砷酸盐,超过了磁铁矿{111}表面上空四面体的理论最大位点密度(3.2个位点/ nm(2)或5.3μmol / m(2))。这一发现有助于解释纳米晶磁铁矿颗粒(> 10μmol / m(2))的非凡的As(III)吸附能力。但是,与C-3表面复合物相比,非晶态表面沉淀物的溶解度更高,导致覆盖范围超过1.9μmol / m(2)的溶解砷浓度急剧增加。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号