...
首页> 外文期刊>Langmuir: The ACS Journal of Surfaces and Colloids >New method for atomistic modeling of the microstructure of activated carbons using hybrid reverse Monte Carlo simulation
【24h】

New method for atomistic modeling of the microstructure of activated carbons using hybrid reverse Monte Carlo simulation

机译:混合反向蒙特卡洛模拟的活性炭微观结构原子建模的新方法

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

We propose a new hybrid reverse Monte Carlo (HRMC) procedure for atomistic modeling of the microstructure of activated carbons whereby the guessed configuration for the HRMC construction simulation is generated using the characterization results (pore size and pore wall thickness distributions) obtained by the interpretation of argon adsorption at 87 K using our improved version of the slit-pore model, termed the finite wall thickness (FWT) model (Nguyen, T. X.; Bhatia, S. K. Langmuir 2004, 20, 3532). This procedure overcomes limitations arising from the use of short-range potentials in the conventional HRMC method, which make the latter unsuitable for carbons such as activated carbon fibers that are anisotropic with medium-range ordering induced by their complex pore structure. The newly proposed approach is applied specifically for the atomistic construction of an activated carbon fiber ACF15, provided by Kynol Corporation (Nguyen, T. X.; Bhatia, S. K. Carbon 2005, 43, 775). It is found that the PSD of the ACF15's constructed microstructure is in good agreement with that determined using argon adsorption at 87 K. Furthermore, we have also found that the use of the Lennard-Jones (LJ) carbon-fluid interaction well depth obtained from scaling the flat graphite surface-fluid interaction well depth taken from Steele (Steele, W. A. Surf. Sci. 1973, 36, 317) provides an excellent prediction of experimental adsorption data including the differential heat of adsorption of simple gases (Ar, N-2, CH4, CO2) over a wide range of temperatures and pressures. This finding is in agreement with the enhancement of the LJ carbon-fluid well depth due to the curvature of the carbon surface, found by the use of ab initio calculations (Klauda, J. B.; Jiang, J.; Sandler, S. I. J. Phys. Chem. B 2004, 108, 9842).
机译:我们提出了一种新的混合反向蒙特卡洛(HRMC)程序,用于活性炭微观结构的原子建模,从而使用通过解释以下内容获得的表征结果(孔径和孔壁厚度分布)生成HRMC结构模拟的推测构型使用我们改良版的狭缝孔模型(称为有限壁厚(FWT)模型)在87 K时进行氩气吸附(Nguyen,TX; Bhatia,SK Langmuir 2004,20,3532)。该方法克服了传统HRMC方法中由于使用短距离电势而引起的局限性,后者使后者不适用于碳,例如由于其复杂的孔结构而具有中等范围有序各向异性的活性碳纤维。新提出的方法专门用于由Kynol Corporation提供的活性炭纤维ACF15的原子结构(Nguyen,T. X .; Bhatia,S. K. Carbon 2005,43,775)。发现ACF15的微观结构的PSD与使用氩气在87 K吸附下测定的PSD吻合良好。此外,我们还发现,使用Lennard-Jones(LJ)碳-流体相互作用井深度可从缩放从Steele(Steele,WA Surf。Sci。1973,36,317)获得的平坦石墨表面-流体相互作用井的深度可以很好地预测实验吸附数据,包括简单气体(Ar,N-2 ,CH4,CO2)在很宽的温度和压力范围内。这一发现与碳表面曲率导致的LJ碳流体井深度的增加是一致的,这是通过使用从头算计算得出的(Klauda,JB; Jiang,J .; Sandler,SIJ Phys.Chem。 B 2004,108,9842)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号