...
首页> 外文期刊>Langmuir: The ACS Journal of Surfaces and Colloids >Use of Spatiotemporal Response Information from Sorption-Based Sensor Arrays to Identify and Quantify the Composition of Analyte Mixtures
【24h】

Use of Spatiotemporal Response Information from Sorption-Based Sensor Arrays to Identify and Quantify the Composition of Analyte Mixtures

机译:使用基于吸附的传感器阵列的时空响应信息来识别和量化分析物混合物的组成

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Linear sensor arrays made from small molecule/carbon black composite chemiresistors placed in a low-headspace volume chamber,with vapor delivered at low flow rates,allowed for the extraction of new chemical information that significantly increased the ability of the sensor arrays to identify vapor mixture components and to quantify their concentrations.Each sensor sorbed vapors from the gas stream and,thereby,as in gas chromatography,separated species having high vapor pressures from species having low vapor pressures.Instead of producing only equilibrium-based sensor responses that were representative of the thermodynamic equilibrium partitioning of analyte between each sensor and the initial vapor phase,the sensor responses varied depending on the position of the sensor in the chamber and the time since the beginning of the analyte exposure.The concomitant spatiotemporal (ST) sensor array response therefore provided information that was a function of time,as well as of the position of the sensor in the chamber.The responses to pure analytes and to multicomponent analyte mixtures comprised of hexane,decane,ethyl acetate,chlorobenzene,ethanol,and/or butanol were recorded along each of the sensor arrays.Use of a non-negative least-squares (NNLS) method for analysis of the ST data enabled the correct identification and quantification of the composition of two-,three-,four-,and five-component mixtures from arrays using only four chemically different sorbent films.In contrast,when traditional time-and position-independent sensor response information was used,these same mixtures could not be identified or quantified robustly.The work has also demonstrated that,for ST data,NNLS yielded significantly better results than analyses using extended disjoint principal components modeling.The ability to correctly identify and quantify constituent components of vapor mixtures through the use of such ST information significantly expands the capabilities of such broadly cross-reactive arrays of sensors.
机译:由小分子/炭黑复合化学阻隔器制成的线性传感器阵列,放置在低顶部空间的腔室内,蒸气以低流速输送,可提取新的化学信息,从而显着提高了传感器阵列识别蒸气混合物的能力每个传感器从气流中吸收蒸气,因此,如气相色谱法一样,将具有高蒸气压的物质从具有低蒸气压的物质中分离出来,而不是仅产生代表基于平衡的传感器响应在每个传感器和初始气相之间分析物的热力学平衡分配中,传感器响应随传感器在反应室内的位置以及自开始暴露分析物以来的时间而变化。因此伴随的时空(ST)传感器阵列响应提供的信息是时间和位置的函数沿每个传感器阵列记录了对纯分析物以及由己烷,癸烷,乙酸乙酯,氯苯,乙醇和/或丁醇组成的多组分分析物混合物的响应。平方分析(NNLS)方法用于分析ST数据,仅使用四个化学不同的吸附剂膜就可以正确识别和量化阵列中的二,三,四和五组分混合物的成分。使用传统的与时间和位置无关的传感器响应信息,无法对相同的混合物进行可靠地识别或量化。研究还表明,对于ST数据,NNLS的结果要好于使用扩展不相交主成分建模的分析结果。通过使用此类ST信息正确识别和量化蒸气混合物的组成成分的能力显着扩展了此类广泛的交叉反应的能力ve个传感器阵列。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号