首页> 外文期刊>Nucleic Acids Research >U1 snRNP is mislocalized in ALS patient fibroblasts bearing NLS mutations in FUS and is required for motor neuron outgrowth in zebrafish
【24h】

U1 snRNP is mislocalized in ALS patient fibroblasts bearing NLS mutations in FUS and is required for motor neuron outgrowth in zebrafish

机译:U1 snRNP在FUS中携带NLS突变的ALS患者成纤维细胞中错位,是斑马鱼运动神经元向外生长所必需的

获取原文
获取原文并翻译 | 示例
           

摘要

Mutations in FUS cause amyotrophic lateral sclerosis (ALS), but the molecular pathways leading to neurodegeneration remain obscure. We previously found that U1 snRNP is the most abundant FUS interactor. Here, we report that components of the U1 snRNP core particle (Sm proteins and U1 snRNA), but not the mature U1 snRNP-specific proteins (U1-70K, U1A and U1C), co-mislocalize with FUS to the cytoplasm in ALS patient fibroblasts harboringmutations in the FUS nuclear localization signal (NLS). Similar results were obtained in HeLa cells expressing the ALS-causing FUS R495X NLS mutation, and mislocalization of Sm proteins is RRM-dependent. Moreover, as observed with FUS, knockdown of any of the U1 snRNP-specific proteins results in a dramatic loss of SMN-containing Gems. Significantly, knockdown of U1 snRNP in zebrafish results in motor axon truncations, a phenotype also observed with FUS, SMN and TDP-43 knockdowns. Our observations linking U1 snRNP to ALS patient cells with FUS mutations, SMN-containing Gems, and motor neurons indicate that U1 snRNP is a component of a molecular pathway associated with motor neuron disease. Linking an essential canonical splicing factor (U1 snRNP) to this pathway provides strong new evidence that splicing defects may be involved in pathogenesis and that this pathway is a potential therapeutic target.
机译:FUS中的突变会引起肌萎缩性侧索硬化症(ALS),但导致神经退行性变的分子途径仍然不清楚。我们以前发现U1 snRNP是最丰富的FUS相互作用子。在这里,我们报道了U1 snRNP核心颗粒(Sm蛋白和U1 snRNA)的成分,而不是成熟的U1 snRNP特异性蛋白(U1-70K,U1A和U1C),与FUS共同定位在ALS患者细胞质FUS核定位信号(NLS)中含有突变的成纤维细胞。在表达引起ALS的FUS R495X NLS突变的HeLa细胞中获得了相似的结果,Sm蛋白的错位是RRM依赖性的。此外,如FUS所观察到的,任何U1 snRNP特异性蛋白的敲低都会导致含SMN的宝石大量丢失。值得注意的是,在斑马鱼中敲除U1 snRNP会导致运动轴突截短,这种表型在FUS,SMN和TDP-43敲除中也观察到。我们的观察结果将U1 snRNP与具有FUS突变,含SMN的宝石和运动神经元的ALS患者细胞联系起来,表明U1 snRNP是与运动神经元疾病相关的分子途径的组成部分。将必要的规范剪接因子(U1 snRNP)链接到此途径提供了强有力的新证据,表明剪接缺陷可能与发病机理有关,并且该途径是潜在的治疗靶标。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号