...
首页> 外文期刊>NeuroImage >Mapping dynamical properties of cortical microcircuits using robotized TMS and EEG: Towards functional cytoarchitectonics
【24h】

Mapping dynamical properties of cortical microcircuits using robotized TMS and EEG: Towards functional cytoarchitectonics

机译:使用机器人化的TMS和EEG绘制皮层微电路的动力学特性:走向功能性细胞结构学

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Brain dynamics at rest depend on the large-scale interactions between oscillating cortical microcircuits arranged into macrocolumns. Cytoarchitectonic studies have shown that the structure of those microcircuits differs between cortical regions, but very little is known about interregional differences of their intrinsic dynamics at a macro-scale in human. We developed here a new method aiming at mapping the dynamical properties of cortical microcircuits non-invasively using the coupling between robotized transcranial magnetic stimulation and electroencephalography. We recorded the responses evoked by the stimulation of 18 cortical targets largely covering the accessible neocortex in 22 healthy volunteers. Specific data processing methods were developed to map the local source activity of each cortical target, which showed inter-regional differences with very good interhemispheric reproducibility. Functional signatures of cortical microcircuits were further studied using spatio-temporal decomposition of local source activities in order to highlight principal brain modes. The identified brain modes revealed that cortical areas with similar intrinsic dynamical properties could be distributed either locally or not, with a spatial signature that was somewhat reminiscent of resting state networks. Our results provide the proof of concept of "functional cytoarchitectonics", that would guide the parcellation of the human cortex using not only its cytoarchitecture but also its intrinsic responses to local perturbations. This opens new avenues for brain modelling and physiopathology readouts. (C) 2016 Elsevier Inc. All rights reserved.
机译:静止时的大脑动力学取决于布置在大柱中的振荡皮层微电路之间的大规模相互作用。细胞建筑研究表明,这些微电路的结构在皮层区域之间有所不同,但是人们对它们的固有动力学在人的宏观尺度上的区域间差异知之甚少。我们在这里开发了一种新方法,旨在利用机器人经颅磁刺激与脑电图之间的耦合以非侵入方式绘制皮层微电路的动力学特性。我们记录了在22位健康志愿者中刺激18个皮质靶标而引起的反应,这些靶标覆盖了可触及的新皮层。开发了特定的数据处理方法来绘制每个皮质靶标的局部源活性图,该图显示了区域间的差异以及非常好的半球间可再现性。使用局部源活动的时空分解对皮质微电路的功能特征进行了进一步研究,以突出主要的大脑模式。确定的大脑模式表明,具有相似内在动力学特性的皮质区域可以局部分布或不局部分布,其空间特征在某种程度上让人联想到静止状态网络。我们的结果提供了“功能性细胞结构学”概念的证明,该概念将不仅利用其细胞结构,而且利用其对局部扰动的内在反应来指导人类皮质的分裂。这为脑部建模和生理病理学读数开辟了新途径。 (C)2016 Elsevier Inc.保留所有权利。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号