...
首页> 外文期刊>Nanotechnology >Identification of energy dissipation mechanisms in CNT-reinforced nanocomposites
【24h】

Identification of energy dissipation mechanisms in CNT-reinforced nanocomposites

机译:碳纳米管增强纳米复合材料能量耗散机理的确定

获取原文
获取原文并翻译 | 示例

摘要

In this paper we present our recent findings on the mechanisms of energy dissipation in polymerbased nanocomposites obtained through experimental investigations. The matrix of the nanocomposite was polystyrene (PS) which was reinforced with carbon nanotubes (CNTs). To study the mechanical strain energy dissipation of nanocomposites, we measured the ratio of loss to storage modulus for different CNT concentrations and alignments. CNT alignment was achieved via hot-drawing of PS-CNT. In addition, CNT agglomeration was studied via a combination of SEM imaging and Raman scanning. We found that at sufficiently low strains, energy dissipation in composites with high CNT alignment is not a function of applied strain, as no interfacial slip occurs between the CNTs and PS. However, below the interfacial slip strain threshold, damping scales monotonically with CNT content, which indicates the prevalence of CNT-CNT friction dissipation mechanisms within agglomerates. At higher strains, interfacial slip also contributes to energy dissipation. However, the increase in damping with strain, especially when CNT agglomerates are present, does not scale linearly with the effective interface area between CNTs and PS, suggesting a significant contribution of friction between CNTs within agglomerates to energy dissipation at large strains. In addition, for the first time, a comparison between the energy dissipation in randomly oriented and aligned CNT composites was made. It is inferred that matrix plasticity and tearing caused by misorientation of CNTs with the loading direction is a major cause of energy dissipation. The results of our research can be used to design composites with high energy dissipation capability, especially for applications where dynamic loading may compromise structural stability and functionality, such as rotary wing structures and antennas.
机译:在本文中,我们介绍了通过实验研究获得的基于聚合物的纳米复合材料能量耗散机理的最新发现。纳米复合材料的基质是用碳纳米管(CNT)增强的聚苯乙烯(PS)。为了研究纳米复合材料的机械应变能耗散,我们针对不同的CNT浓度和排列测量了损耗与储能模量的比率。 CNT的排列是通过热拉伸PS-CNT实现的。另外,通过SEM成像和拉曼扫描相结合研究了CNT的团聚。我们发现,在足够低的应变下,具有高CNT取向的复合材料的能量耗散不是施加应变的函数,因为在CNT和PS之间不会发生界面滑移。但是,在界面滑动应变阈值以下,阻尼随CNT含量单调缩放,这表明在团聚体中CNT-CNT摩擦耗散机制的普遍存在。在较高的应变下,界面滑移也会导致能量耗散。然而,随着应变的阻尼增加,特别是当存在CNT附聚物时,阻尼的增加并不与CNT和PS之间的有效界面面积成线性比例,这表明附聚物中的CNT之间的摩擦对大应变下的能量耗散有显着贡献。此外,首次比较了随机取向和取向的CNT复合材料的能量耗散。可以推断出,由于碳纳米管在加载方向上的不正确取向引起的基体可塑性和撕裂是导致能量耗散的主要原因。我们的研究结果可用于设计具有高能量耗散能力的复合材料,尤其是在动态载荷可能会损害结构稳定性和功能性的应用中,例如旋转机翼结构和天线。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号