...
首页> 外文期刊>Nanotechnology >Energy harvesting performance of piezoelectric ceramic and polymer nanowires
【24h】

Energy harvesting performance of piezoelectric ceramic and polymer nanowires

机译:压电陶瓷和聚合物纳米线的能量收集性能

获取原文
获取原文并翻译 | 示例

摘要

Energy harvesting from ubiquitous ambient vibrations is attractive for autonomous small-power applications and thus considerable research is focused on piezoelectric materials as they permit direct inter-conversion of mechanical and electrical energy. Nanogenerators (NGs) based on piezoelectric nanowires are particularly attractive due to their sensitivity to small-scale vibrations and may possess superior mechanical-to-electrical conversion efficiency when compared to bulk or thin-film devices of the same material. However, candidate piezoelectric nanowires have hitherto been predominantly analyzed in terms of NG output (i.e. output voltage, output current and output power density). Surprisingly, the corresponding dynamical properties of the NG, including details of how the nanowires are mechanically driven and its impact on performance, have been largely neglected. Here we investigate all realizable NG driving contexts separately involving inertial displacement, applied stress T and applied strain S, highlighting the effect of driving mechanism and frequency on NG performance in each case. We argue that, in the majority of cases, the intrinsic high resonance frequencies of piezoelectric nanowires (similar to tens of MHz) present no barrier to high levels of NG performance even at frequencies far below resonance (< 1 kHz) typically characteristic of ambient vibrations. In this context, we introduce vibrational energy harvesting (VEH) coefficients eta S and eta T, based on intrinsic materials properties, for comparing piezoelectric NG performance under strain-driven and stress-driven conditions respectively. These figures of merit permit, for the first time, a general comparison of piezoelectric nanowires for NG applications that takes into account the nature of the mechanical excitation. We thus investigate the energy harvesting performance of prototypical piezoelectric ceramic and polymer nanowires. We find that even though ceramic and polymer nanowires have been found, in certain cases, to have similar energy conversion efficiencies, ceramics are more promising in strain-driven NGs while polymers are more promising for stress-driven NGs. Our work offers a viable means of comparing NG materials and devices on a like-for-like basis that may be useful for designing and optimizing nanoscale piezoelectric energy harvesters for specific applications.
机译:从无处不在的环境振动中收集能量对于自主的小功率应用很有吸引力,因此大量研究集中在压电材料上,因为压电材料允许直接转换机械能和电能。基于压电纳米线的纳米发电机(NGs)特别吸引人,因为它们对小规模的振动敏感,并且与相同材料的大体积或薄膜器件相比,可能具有出色的机械-电气转换效率。然而,迄今为止,主要根据NG输出(即,输出电压,输出电流和输出功率密度)分析了候选压电纳米线。令人惊讶的是,NG的相应动力学特性,包括如何机械驱动纳米线及其对性能的影响的细节,已被大大忽略。在这里,我们分别研究了所有可实现的NG驱动情况,包括惯性位移,施加的应力T和施加的应变S,着重介绍了每种情况下驱动机制和频率对NG性能的影响。我们认为,在大多数情况下,压电纳米线的固有高共振频率(约数十兆赫兹)即使在远低于共振(<1 kHz)的频率(通常是环境振动的典型特征)下也不会阻碍NG性能的高水平。在此背景下,我们基于固有的材料特性介绍了振动能量收集(VEH)系数eta S和eta T,分别比较了在应变驱动和应力驱动条件下的压电NG性能。这些品质因数首次实现了将NG压电纳米线用于机械应用的一般比较。因此,我们研究了典型的压电陶瓷和聚合物纳米线的能量收集性能。我们发现,即使在某些情况下,发现陶瓷和聚合物纳米线具有相似的能量转换效率,陶瓷在应变驱动的NG中也更有前景,而聚合物在应力驱动的NG中则更有前景。我们的工作提供了一种可行的方法,可以按同类比较NG材料和装置,这对于设计和优化特定用途的纳米级压电能量收集器可能有用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号