首页> 外文期刊>Nanotechnology >Metal on metal oxide nanowire Co-catalyzed Si photocathode for solar water splitting
【24h】

Metal on metal oxide nanowire Co-catalyzed Si photocathode for solar water splitting

机译:金属氧化物纳米线上的金属共催化硅光电阴极用于太阳能水的分解

获取原文
获取原文并翻译 | 示例
       

摘要

We report a systematic study of Si|ZnO and Si|ZnO| metal photocathodes for effective photoelectrochemical cells and hydrogen generation. Both ZnO nanocrystalline thin films and vertical nanowire arrays were studied. Si|ZnO electrodes showed increased cathodic photocurrents due to improved charge separation by the formation of a p junction, and Si|ZnO:Al (n ~+-ZnO) and Si|ZnO(N _2) (thin films prepared in N _2/Ar gas) lead to a further increase in cathodic photocurrents. Si|ZnONW (nanowire array) photocathodes dramatically increased the photocurrents and thus photoelectrochemical conversion efficiency due to the enhanced light absorption and enlarged surface area. The ZnO film thickness and ZnO nanowire length were important to the enhancements. A thin metal coating on ZnO showed increased photocurrent due to a catalyzed hydrogen evolution reaction and Ni metal showed comparable catalytic activities to those of Pt and Pd. Moreover, photoelectrochemical instability of Si|ZnO electrodes was minimized by metal co-catalysts. Our results indicate that the metal and ZnO on p-type Si serve as co-catalysts for photoelectrochemical water splitting, which can provide a possible low-cost and scalable method to fabricate high efficiency photocathodes for practical applications in clean solar energy harvesting.
机译:我们报告了对Si | ZnO和Si | ZnO |的系统研究。金属光电阴极,用于有效的光电化学电池和氢生成。 ZnO纳米晶体薄膜和垂直纳米线阵列都进行了研究。由于通过ap / n结形成而改善了电荷分离,Si | ZnO电极显示出增加的阴极光电流,以及Si | ZnO:Al(n〜+ -ZnO)和Si | ZnO(N _2)(在N _2中制备的薄膜/氩气)导致阴极光电流进一步增加。 Si | ZnONW(纳米线阵列)光电阴极显着增加了光电流,并因此提高了光吸收和扩大了表面积,从而提高了光电化学转换效率。 ZnO膜的厚度和ZnO纳米线的长度对于增强效果很重要。 ZnO上的薄金属涂层显示出由于催化的氢释放反应而增加的光电流,而Ni金属显示出与Pt和Pd相当的催化活性。此外,通过金属助催化剂将Si | ZnO电极的光电化学不稳定性降至最低。我们的结果表明,p型Si上的金属和ZnO可以用作光电化学水分解的助催化剂,这可以提供一种低成本且可扩展的方法来制造高效的光电阴极,以便在清洁太阳能收集中实际应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号