首页> 外文期刊>Macromolecules >Viscoelastic Properties of Polymer-Grafted Nanoparticle Composites from Molecular Dynamics Simulations
【24h】

Viscoelastic Properties of Polymer-Grafted Nanoparticle Composites from Molecular Dynamics Simulations

机译:聚合物接枝的纳米颗粒复合材料的粘弹性特性的分子动力学模拟

获取原文
获取原文并翻译 | 示例
           

摘要

To provide insights into how polymer-grafted nanoparticles (NPs) enhance the viscoelastic properties of polymers, we have computed the frequency-dependent storage and loss modulus of coarse-grained models of polymer nanocomposites by means of molecular dynamics simulations. Nanocomposites containing NPs grafted with chains similar to those comprising the host polymer matrix exhibit considerably higher moduli than nanocomposites containing bare NPs across the entire frequency range investigated. This effect is shown to arise from the additional distortion of the shear field in the polymer matrix resulting from the grafted chains and from the slower relaxation time of the grafted chains compared to the matrix chains when the former are at least half as long as the latter. Increasing the attraction between the grafted and matrix chains results in further enhancement in the two moduli, but only at frequencies slower than those corresponding to the longest relaxation time of the chains. This effect is shown to arise from a dramatic slowdown in the relaxation dynamics of both the matrix and grafted chains. In addition, the nanocomposite moduli are found to increase with decreasing NP size and increasing NP loading, grafted chain length, and grafting density with varying frequency dependence. These parametric effects are also explained in terms of shear distortion effects and chain relaxation times. Based on these results, a phenomenological model is proposed to estimate the storage and loss modulus of such nanocomposites as a function of the Rouse relaxation times of the grafted and matrix chains and the volume fractions of the NPs, grafted chains, and matrix chains. The model captures the observed dependence of the moduli with the examined parameters of the grafted NPs and yields moduli predictions that agree quantitatively with those computed from the simulations at low frequencies.
机译:为了提供有关聚合物接枝的纳米颗粒(NPs)如何增强聚合物的粘弹性的见解,我们通过分子动力学模拟计算了聚合物纳米复合材料的粗颗粒模型的频率依赖性储能和损耗模量。在整个研究的频率范围内,与包含裸露的NPs的纳米复合材料相比,含有与包含主体聚合物基质的接枝链相似的链接枝的NP的纳米复合材料的模量要高得多。当接枝链的长度至少是接枝链的一半时,显示出这种效果是由于接枝链引起的聚合物基体中剪切场的附加变形以及接枝链与基体链相比弛豫时间较慢引起的。 。嫁接链和基质链之间的吸引力增加,导致两个模量进一步提高,但仅在比对应于最长链弛豫时间的频率低的频率下。结果表明,这种效应是由于基质链和接枝链的松弛动力学急剧降低而引起的。此外,发现纳米复合材料的模量随着NP尺寸的减小和NP负载的增加,接枝链长和接枝密度的变化而增加,并且具有不同的频率依赖性。这些参数效应也用剪切变形效应和链松弛时间来解释。基于这些结果,提出了一种现象学模型,以估计这种纳米复合材料的储能模量和损耗模量,该函数是接枝链和基质链的Rouse弛豫时间以及NP,接枝链和基质链的体积分数的函数。该模型捕获所观察到的模量与所检测的接枝NP的参数的相关性,并得出模量预测与低频模拟计算得出的定量预测相符。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号