...
首页> 外文期刊>Macromolecules >Measurement of Supercritical CO2 Plasticization of Poly(tetrafluoroethylene) Using a Linear Variable Differential Transformer
【24h】

Measurement of Supercritical CO2 Plasticization of Poly(tetrafluoroethylene) Using a Linear Variable Differential Transformer

机译:使用线性可变差动变压器测量聚四氟乙烯的超临界CO2增塑

获取原文
获取原文并翻译 | 示例
           

摘要

From measurements utilizing a linear variable differential transformer (LVDT), poly(tetrafluoroethylene) is found to undergo unusually high linear dilation in CO2 at high temperatures and pressures. The extent of dilation and the dilational profiles are shown to depend strongly on molecular weight and crystallinity. It is also shown that the conditions at which melting and sintering occur can be identified from LVDT measurements. After the first heating cycle in CO2, unsintered samples (PTFE-230, -600, -1000, and U-PTFE) show a T-m identical to PTFE (327 degrees C) instead of the higher pre-CO2 T-m. This observation indicates that these samples were sintered during the LVDT measurements. Delta H-f was constant for pre-CO2 PTFE-230, -600, and -1000, but after sintering, crystallinity decreased with increasing molecular weight. In contrast to the precipitous drop for U-PTFE, Delta H-f for PTFE-230, -600, and -1000 remained above 70 J/g. Chain entanglement effects on crystallization are modest for these low molecular weight materials. For lower molecular weight samples (PTFE-230, -600, and -1000), T. depression and melt flow were observed. For the high molecular weight samples (PTFE and U-PTFE), T-m depression in CO2 also occurs, but exceptionally high molecular weight and chain entanglement preclude melt flow. Both PTFE and U-PTFE are unusual in that melting is signaled by an increase in dilation rather than the usual loss of shape or "slumping" due to melt flow. Despite the hydrostatic pressure effect, PTFE melting point depression in supercritical CO2 was found to be approximately 30 degrees C.
机译:通过使用线性可变差动变压器(LVDT)进行的测量,发现聚四氟乙烯在高温和高压下在CO2中经历异常高的线性膨胀。扩张程度和扩张曲线显示出强烈地取决于分子量和结晶度。还显示可以从LVDT测量中确定发生熔融和烧结的条件。在二氧化碳中进行第一个加热循环后,未烧结的样品(PTFE-230,-600,-1000和U-PTFE)显示出与PTFE(327摄氏度)相同的T-m,而不是较高的预CO2 T-m。该观察结果表明,这些样品是在LVDT测量过程中烧结的。二氧化碳前PTFE-230,-600和-1000的Delta H-f不变,但在烧结后,结晶度随分子量增加而降低。与U-PTFE的急剧下降相反,PTFE-230,-600和-1000的Delta H-f保持在70 J / g以上。对于这些低分子量材料,链缠结对结晶的影响适中。对于较低分子量的样品(PTFE-230,-600和-1000),观察到T.凹陷和熔体流动。对于高分子量样品(PTFE和U-PTFE),也会在CO2中出现T-m下降,但是异常高的分子量和链缠结会阻止熔体流动。 PTFE和U-PTFE均不常见,其熔融是通过膨胀的增加而不是通常的由于熔体流动引起的形状损失或“塌陷”来表示。尽管有静水压力效应,但发现超临界CO2中的PTFE熔点降低约为30摄氏度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号