首页> 外文期刊>Macromolecules >Atomistic Monte Carlo simulations of polymer melt elasticity: Their nonequilibrium thermodynamics GENERIC formulation in a generalized canonical ensemble
【24h】

Atomistic Monte Carlo simulations of polymer melt elasticity: Their nonequilibrium thermodynamics GENERIC formulation in a generalized canonical ensemble

机译:聚合物熔体弹性的原子蒙特卡罗模拟:广义规范集合中的非平衡热力学GENERIC公式

获取原文
获取原文并翻译 | 示例
           

摘要

A novel atomistic Monte Carlo (MC) methodology is presented for the simulation of systems with a complex internal microstructure away from equilibrium, directly from first principles. The methodology is based on the general equation for the nonequilibrium reversible-irreversible coupling (GENERIC) and proposes MC, and not molecular dynamics (MD), simulations in a generalized canonical ensemble. The new approach, also termed GENERIC MC, is hierarchical and starts with the definition or selection of the set of state variables describing the system at a coarse-grained level. To each state variable, a field or conjugate variable is introduced as a proper Lagrange multiplier when projecting atomistic coordinates onto the macroscopic state variables. Each conjugate variable is formally defined as the partial derivative of the system thermodynamic potential (the entropy) with respect to the corresponding coarse-grained state variable, keeping the rest of the state variables constant. The set of conjugate variables defines the extended canonical ensemble of the atomistic GENERIC MC simulation. By analyzing the structure of the canonical GENERIC equation for spatially homogeneous, time-independent flows, a kinematic interpretation is attributed to the conjugate variables of the structural state variables connecting them to the velocity gradient tensor. This sets the framework for performing realistic atomistic MC simulations, guided by the thermodynamically admissible macroscopic models derived from GENERIC, to calculate the free energy of the nonequilibrium system, without going through the full dynamical problem. The formulation is outlined here for three different viscoelastic fluid models: the single- and multiple-conformation tensor viscoelastic models for unentangled polymers and the pompon model for long-chain branched (LCB) molecules. Results are presented from detailed end-bridging, atomistic MC simulations with the new method for the elasticity of a linear C-156 polyethylene (PE) melt, in a steady-state uniaxial elongational flow. In the simulations, a four-mode conformation tensor viscoelastic model was employed to project atomistic coordinates. The dependence of the melt free energy of elasticity on chain degree of deformation due to applied flow field is reported and compared against the predictions of simple analytic models, commonly used in polymer flow calculations, such as the Hookean dumbbell and the FENE-P. The latter, which accounts for the finite extensibility of the polymer, is soon to be more representative of the actual melt response than the former. It is also seen that, in the regime of small Deborah numbers studied, only the components of the first-mode conformation tensor deviate from their equilibrium values; higher-mode conformation tensors retain their equilibrium, spherical symmetry. This explains the success of the single conformation tensor FENE-P viscoelastic model in fitting rheological data. [References: 27]
机译:提出了一种新颖的原子蒙特卡罗(MC)方法,用于模拟具有复杂的内部微观结构的系统,该系统的微观结构远离平衡,直接来自于第一原理。该方法基于非平衡可逆-不可逆偶合(GENERIC)的通用方程,并提出了在广义规范集成中的MC模拟,而不是分子动力学(MD)模拟。这种新方法也称为GENERIC MC,它是分层的,从定义或选择一组描述系统粗略状态的状态变量开始。当将原子坐标投影到宏观状态变量上时,会为每个状态变量引入一个字段或共轭变量作为适当的拉格朗日乘数。每个共轭变量都被正式定义为系统热力学势(熵)相对于相应的粗粒度状态变量的偏导数,而其余状态变量则保持不变。共轭变量集定义了原子GENERIC MC模拟的扩展规范集合。通过分析规范的GENERIC方程在空间上均一的,与时间无关的流的结构,运动学解释归因于结构状态变量的共轭变量,这些共轭变量将它们连接到速度梯度张量。这就为执行逼真的原子MC模拟提供了框架,并在遵循GENERIC的热力学允许的宏观模型的指导下,计算了非平衡系统的自由能,而无需解决整个动力学问题。这里概述了三种不同的粘弹性流体模型的配方:用于无缠结聚合物的单构和多构张量粘弹性模型和用于长链支化(LCB)分子的绒球模型。通过详细的端桥,原子MC模拟以及采用线性C-156聚乙烯(PE)熔体在稳态单轴伸长流中的弹性的新方法给出了结果。在模拟中,采用四模式构象张量粘弹性模型来投影原子坐标。报告了弹性熔体自由能对施加的流场导致的链变形程度的依赖性,并将其与通常用于聚合物流量计算的简单分析模型(如Hookean哑铃和FENE-P)的预测进行了比较。后者说明了聚合物的有限延伸性,很快将比前者更能代表实际的熔体响应。还可以看出,在研究的小Deborah数域中,只有第一模构象张量的分量偏离了它们的平衡值;高模构象张量保持平衡,球形对称。这解释了单一构象张量FENE-P粘弹性模型在拟合流变数据中的成功。 [参考:27]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号