首页> 外文期刊>Macromolecules >Variable connectivity methods for the atomistic Monte Carlo simulation of inhomogeneous and/or anisotropic polymer systems of precisely defined chain length distribution: Tuning the spectrum of chain relative chemical potentials
【24h】

Variable connectivity methods for the atomistic Monte Carlo simulation of inhomogeneous and/or anisotropic polymer systems of precisely defined chain length distribution: Tuning the spectrum of chain relative chemical potentials

机译:用于精确定义链长分布的不均匀和/或各向异性聚合物系统的原子蒙特卡罗模拟的可变连通性方法:调节链相对化学势的谱

获取原文
获取原文并翻译 | 示例
           

摘要

Application of variable connectivity Monte Carlo (MC) methods to the simulation of atomistically detailed polymer melts leads to deviations from monodispersity. To control the chain length distribution, a spectrum mu* of chain relative chemical potentials needs to be applied. The spectrum mu* that produces the most common limiting molecular weight (MW) distributions has been obtained in the past only for polymers in the bulk, for which mu* is solely determined by combinatorial considerations. In this work, the methodology is extended to more complex systems, such as inhomogeneous and/or anisotropic polymer melts, by presenting a novel numerical scheme for deriving the relationship between mu* and desired chain length distribution, where the energetics of the system is also taken into account. We illustrate the new approach in the case of polymer melts grafted on a solid substrate (both for single and bulk chains), for which the relationship between mu* and actual chain length distribution proposed so far in the literature for free melts breaks down. In contrast, the new method correctly accounts for the effect of grafting on system polydispersity. This is verified in end-bridging Monte Carlo (EBMC) simulations of two polydisperse polyethylene (PE) melt systems, C-78 and C-156, grafted on a noninteracting, hard surface at various grafting densities sigma, for the case where the chain length distribution is constrained to be uniform or for the case where mu* = 0. The new method allows extending and consistently applying newly developed chain connectivity-altering MC algorithms to the atomistic simulation of a variety of polymer melts where polydispersity should be precisely known. [References: 15]
机译:可变连接性蒙特卡洛(MC)方法在模拟原子上详细的聚合物熔体中的应用会导致偏离单分散性。为了控制链长分布,需要应用链相对化学势的光谱μ*。过去,仅针对本体中的聚合物获得了产生最常见极限分子量(MW)分布的光谱mu *,其mu *仅通过组合考虑确定。在这项工作中,通过提出一种新的数值方案来推导mu *和所需链长分布之间的关系,该方法扩展到了更复杂的系统,例如非均质和/或各向异性的聚合物熔体,其中系统的能量也是考虑在内。我们举例说明了将聚合物熔体接枝到固体基质上的新方法(对于单链和本体链),到目前为止,mu *和文献中针对自由熔体提出的实际链长分布之间的关系被打破了。相反,新方法正确地考虑了接枝对系统多分散性的影响。这在两个多分散聚乙烯(PE)熔融体系C-78和C-156的末端桥接蒙特卡罗(EBMC)模拟中得到了验证,在不同的接枝密度sigma的情况下,链C-78和C-156以非接枝的硬表面接枝。长度分布被限制为均匀,或者在mu * = 0的情况下被限制。这种新方法可以扩展并一致地将新开发的链连接改变MC算法应用于各种聚合物熔体的原子模拟中,在这些聚合物熔体中应精确知道多分散性。 [参考:15]

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号