首页> 外文期刊>Electrochimica Acta >Incorporating Embedded Microporous Layers into Topologically Equivalent Pore Network Models for Oxygen Diffusivity Calculations in Polymer Electrolyte Membrane Fuel Cell Gas Diffusion Layers
【24h】

Incorporating Embedded Microporous Layers into Topologically Equivalent Pore Network Models for Oxygen Diffusivity Calculations in Polymer Electrolyte Membrane Fuel Cell Gas Diffusion Layers

机译:将嵌入式微孔层并入拓扑等效孔网络模型中,以计算聚合物电解质膜燃料电池气体扩散层中的氧扩散率。

获取原文
获取原文并翻译 | 示例
       

摘要

In this work, a voxel-based methodology is introduced for the hybridization of a pore network with interspersed nano-porous material elements allowing pore network based oxygen diffusivity calculations in a 3D image of a polymer electrolyte membrane (PEM) fuel cell gas diffusion layer (GDL) with an embedded microporous layer (MPL). The composite GDL is modeled by combining a hybrid network of block MPL elements with prescribed bulk material properties and a topologically equivalent network of larger discrete pores and throats that are directly derived from the 3D image of the GDL substrate. This hybrid network was incorporated into a pore network model, and effective diffusivity predictions of GDL materials with MPL coatings were obtained. Stochastically generated numerical models of carbon paper substrates with and without MPLs were used, and the pore space was directly extracted from this realistic geometry as the input for the pore network model. The effective diffusion coefficient of MPL-coated GDL materials was predicted from 3D images in a pore network modeling environment without resolving the nano-scale structure of the MPL. This method is particularly useful due to the disparate length scales that are involved when attempting to capture pore-scale transport in the GDL. Validation was performed by comparing our predicted diffusivity values to analytical predictions, and excellent agreement was observed. Upon conducting a mesh sensitivity study, it was determined that an MPL element size of 7 mm provided sufficiently high resolution for accurately describing the MPL nano-structure. (C) 2016 Elsevier Ltd. All rights reserved.
机译:在这项工作中,引入了基于体素的方法,用于将孔网络与散布的纳米多孔材料元素进行杂交,从而允许在聚合物电解质膜(PEM)燃料电池气体扩散层的3D图像中基于孔网络的氧扩散率计算( GDL)和嵌入式微孔层(MPL)。通过将具有规定的块状材料特性的块MPL元素的混合网络与直接从GDL基板的3D图像直接得出的较大离散孔和喉的拓扑等效网络进行组合,可以对复合GDL进行建模。将该混合网络并入孔隙网络模型,并获得了具有MPL涂层的GDL材料的有效扩散率预测。使用随机生成的具有和不具有MPL的碳纸基材的数值模型,并直接从该实际几何形状中提取孔隙空间作为孔隙网络模型的输入。在没有解析MPL纳米级结构的情况下,在孔网络建模环境中根据3D图像预测了MPL涂层GDL材料的有效扩散系数。由于尝试捕获GDL中的孔尺度传输时涉及不同的长度尺度,因此该方法特别有用。通过将我们预测的扩散率值与分析预测值进行比较来进行验证,并观察到了极好的一致性。在进行网格敏感性研究时,确定7毫米的MPL元件尺寸提供了足够高的分辨率,可以准确地描述MPL纳米结构。 (C)2016 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号