...
首页> 外文期刊>Electrochimica Acta >Electrochemical NADH regeneration and electroenzymatic CO2 reduction on Cu nanorods/glassy carbon electrode prepared by cyclic deposition
【24h】

Electrochemical NADH regeneration and electroenzymatic CO2 reduction on Cu nanorods/glassy carbon electrode prepared by cyclic deposition

机译:循环沉积法制备的铜纳米棒/玻碳电极上的电化学NADH再生和CO2还原

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Mimicking photosynthesis using NADH is a sustainable method to convert CO2 and mitigate global warming. Here, Cu nanorods with twin crystal structure on glassy carbon (GC) were prepared by a cyclic electrodeposition method with voltage from -0.2 V to -1.0. The prepared CuGC electrodes were used for the electrochemical NADH regeneration and electroenzymatic CO2 reduction at -1.0 V using formate dehydrogenase from Candida boidinii. The selective activation of NADH (1,4-NADH) approached 67% as the deposition cycle number increased. The electron mediator [Cp*Rh(bpy)Cl]Cl complex (Rh(III)) was used to obtain nearly 100% active NADH on the CuGC electrode. The electron transfer rate to Rh(III) is crucial for optimal NADH regeneration: Rh(III) should be reduced to RhH quickly as it has the capability to decompose NADH catalytically. This allows sufficiently high NAD(+) conversion and NADH regeneration reaction rates for the electroenzymatic CO2 reduction to formate. The optimum concentrations of Rh(III) and NAD(+) were estimated to be 0.25 and 1.00 mM, respectively. For the CuGC electrode prepared with 300 deposition cycles, the formate formation rate was estimated to be (6.28 +/- 0.02) x 10(-3) mu mol/mg(CbsFDH)/min, a three-fold increase compared to previously reported results on Cu foil electrode. (C) 2016 Elsevier Ltd. All rights reserved.
机译:使用NADH模仿光合作用是一种可持续的方法,可以转化二氧化碳并缓解全球变暖。在此,通过循环电沉积法以-0.2V至-1.0V的电压制备在玻璃碳(GC)上具有双晶结构的Cu纳米棒。所制备的CuGC电极用于使用Bodinii假丝酵母脱氢酶在-1.0 V下进行NADH的电化学再生和CO2的电还原。随着沉积循环数的增加,NADH(1,4-NADH)的选择性活化接近67%。电子介体[Cp * Rh(bpy)Cl] Cl络合物(Rh(III))用于在CuGC电极上获得近100%的活性NADH。电子向Rh(III)的传输速率对于优化NADH的再生至关重要:Rh(III)应迅速还原为RhH,因为它具有催化分解NADH的能力。这允许足够高的NAD(+)转化率和NADH再生反应速率,以将酶CO2还原成甲酸酯。 Rh(III)和NAD(+)的最佳浓度分别估计为0.25和1.00 mM。对于具有300个沉积循环的CuGC电极,甲酸形成速率估计为(6.28 +/- 0.02)x 10(-3)μmol / mg(CbsFDH)/ min,与以前报道的相比增加了三倍结果在铜箔电极上。 (C)2016 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号