...
首页> 外文期刊>Electrochimica Acta >An Application of Chemical Oscillation: Distinguishing Two Isomers between Cyclohexane-1,3-dione and 1,4-cyclohexanedione
【24h】

An Application of Chemical Oscillation: Distinguishing Two Isomers between Cyclohexane-1,3-dione and 1,4-cyclohexanedione

机译:化学振荡的应用:区分环己烷-1,3-二酮和1,4-环己烷二酮之间的两种异构体

获取原文
获取原文并翻译 | 示例

摘要

In the analytical field, previous applications of chemical oscillation focused on quantitative analysis. We report in this paper a novel qualitative method electrochemically distinguishing two positional isomers by utilizing their perturbation effects on a catalyzed Briggs-Rauscher (BR) oscillation. The catalyst in the system is a macrocyclic nickel (II) complex NiL(ClO4)(2), where the ligand L in the complex is 5,7,7,12,14, 14-hexemethyl-1,4,8,11-tetraazacyclotetradeca-4,11-diene. The experimental results indicated that addition of cyclohexane-1,3-dione (1,3-CHD) or 1,4-cyclohexanedione (1,4-CHD) could affect the profiles of potentiometric oscillations, but their changes in the profiles are greatly different. When 1,3-CHD was injected into the oscillating system, there was an initial spiking of the oscillations, accompanying by quenching of oscillations before the regeneration of oscillations. While 1,4-CHD was injected into the dynamic mixture, the oscillatory system responded to the perturbation with only slight decrease followed by a sharp increase in the potential, before it resumed to its normal oscillation state. The perturbation of 1,3-CHD involves inhibition time, whereas the perturbation of 1,4-CHD does not. Hence these two positional isomers could be distinguished by using their different perturbation effects on a BR dynamic system in the range of 9.0 x 10(-4) to 8.0 x 10(-3) M. Our assumption is that, perturbation of 1,3-CHD on the oscillating system involves a radical oxidization process to produce carboxylic acid, whereas perturbation of 1,4-CHD assumes idiodation and elimination steps to form 1,4-benzoquinone. Such different perturbation mechanisms are responsible for the difference in potentiometric oscillation profiles change. This hypothesis was confirmed by products analysis by FTIR and UV spectra. (C) 2016 Elsevier Ltd. All rights reserved.
机译:在分析领域,化学振荡的先前应用集中于定量分析。我们在本文中报告了一种新颖的定性方法,通过利用它们对催化的Briggs-Rauscher(BR)振荡的扰动效应,电化学区分两个位置异构体。系统中的催化剂是大环镍(II)配合物NiL(ClO4)(2),其中配合物中的配体L为5,7,7,12,14,14-六甲基1,4,8,11 -四氮杂环十四烷基-4,11-二烯。实验结果表明,添加环己烷-1,3-二酮(1,3-CHD)或1,4-环己二酮(1,4-CHD)可能会影响电位振荡,但其变化很大。不同。当将1,3-CHD注入到振荡系统中时,会出现振荡的初始尖峰,并伴随着振荡的猝灭,然后再产生振荡。当将1,4-CHD注入动态混合物中时,振荡系统对扰动作出响应,在恢复到其正常振荡状态之前,电势仅略微下降,随后电势急剧上升。 1,3-CHD的扰动涉及抑制时间,而1,4-CHD的扰动则不涉及抑制时间。因此,可以通过使用它们在9.0 x 10(-4)至8.0 x 10(-3)M范围内对BR动力学系统的不同摄动效应来区分这两个位置异构体。我们的假设是,摄动1,3振荡系统上的-CHD涉及自由基氧化过程以生成羧酸,而1,4-CHD的扰动则假定发生了成环和消除步骤,从而形成了1,4-苯醌。这种不同的摄动机制是造成电位振荡曲线变化的差异的原因。通过FTIR和UV光谱的产物分析证实了该假设。 (C)2016 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号