...
首页> 外文期刊>Electrochimica Acta >Mechanical and Electrochemical Response of a LiCoO2 Cathode using Reconstructed Microstructures
【24h】

Mechanical and Electrochemical Response of a LiCoO2 Cathode using Reconstructed Microstructures

机译:重构微结构对LiCoO2阴极的机械和电化学响应

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

As LiCoO2 cathodes are charged, delithiation of the LiCoO2 active material leads to an increase in the lattice spacing, causing swelling of the particles. When these particles are packed into a bicontinuous, percolated network, as is the case in a battery electrode, this swelling leads to the generation of significant mechanical stress. In this study we performed coupled electrochemical-mechanical simulations of the charging of a LiCoO2 cathode in order to elucidate the mechanisms of stress generation and the effect of charge rate and microstructure on these stresses. Energy dispersive spectroscopy combined with scanning electron microscopy imaging was used to create 3D reconstructions of a LiCoO2 cathode, and the Conformal Decomposition Finite Element Method is used to automatically generate computational meshes on this reconstructed microstructure. Replacement of the ideal solution Fickian diffusion model, typically used in battery simulations, with a more general non -ideal solution model shows substantially smaller gradients of lithium within particles than is typically observed in the literature. Using this more general model, lithium gradients only appear at states of charge where the open-circuit voltage is relatively constant. While lithium gradients do affect the mechanical stress state in the particles, the maximum stresses are always found in the fully-charged state and are strongly affected by the local details of the microstructure and particle-to-particle contacts. These coupled electrochemical-mechanical simulations begin to yield insight into the partitioning of volume change between reducing pore space and macroscopically swelling the electrode. Finally, preliminary studies that include the presence of the polymeric binder suggest that it can greatly impact stress generation and that it is an important area for future research. (C) 2016 Elsevier Ltd. All rights reserved.
机译:当LiCoO2阴极带电时,LiCoO2活性材料的脱锂作用会导致晶格间距增加,从而导致颗粒膨胀。当这些颗粒堆积成双连续的渗透网络时(如电池电极中的情况),这种膨胀会导致产生明显的机械应力。在这项研究中,我们对LiCoO2阴极的充电进行了电化学-机械耦合模拟,以阐明应力产生的机理以及充电速率和微观结构对这些应力的影响。能量色散光谱结合扫描电子显微镜成像被用于创建LiCoO2阴极的3D重建,而保形分解有限元方法被用于在该重建的微结构上自动生成计算网格。用更通用的非理想溶液模型代替通常在电池模拟中使用的理想溶液Fickian扩散模型,表明锂在颗粒中的梯度比文献中通常观察到的小得多。使用这种更通用的模型,锂梯度仅出现在开路电压相对恒定的充电状态下。尽管锂梯度确实会影响颗粒中的机械应力状态,但最大应力总是在充满电状态下发现,并且受到微观结构和颗粒间接触的局部细节的强烈影响。这些耦合的电化学-机械模拟开始深入了解缩小孔隙空间和宏观膨胀电极之间的体积变化。最后,包括聚合物粘合剂的存在在内的初步研究表明,它可以极大地影响应力的产生,并且它是未来研究的重要领域。 (C)2016 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号