...
首页> 外文期刊>Electrochimica Acta >Caterpillar-like sub-micron LiNi0.5Mn1.5O4 structures with site disorder and excess Mn3+ as high performance cathode material for lithium ion batteries
【24h】

Caterpillar-like sub-micron LiNi0.5Mn1.5O4 structures with site disorder and excess Mn3+ as high performance cathode material for lithium ion batteries

机译:具有位错和过量Mn3 +的履带状亚微米LiNi0.5Mn1.5O4结构作为锂离子电池的高性能正极材料

获取原文
获取原文并翻译 | 示例

摘要

Caterpillar-like spinel LiNi0.5Mn1.5O4 (LNMO) sub-micron structures with Fd3m space group were synthesised by polymer assisted sol-gel/electrospinning and post heat treatments in air atmosphere. The novel caterpillar structures were composed of 60-100 nm sized well sintered and interconnected nano grains as observed by FESEM and TEM studies. The presence of Fd3m structure in the LNMO caterpillars were confirmed using X-Ray Diffraction and Raman spectroscopy studies. The Cyclic Voltammetry and Galvanostatic charge-discharge studies revealed the presence of substantial amount of Mn3(+) in LNMO caterpillars. The LNMO caterpillar structures have exhibited high rate capability and excellent capacity retention (118 mAh/g at 1 C rate) after 100 cycles of charge discharge, when compared with P4(3)32 LNMO sol heated powders (82 mAh/g at 1 C rate) synthesised in the absence of polymer. The EIS studies revealed low charge transfer resistances in LNMO caterpillars (4 times lower) in comparison to LNMO sol heated powders. The prepared LNMO caterpillar like structures with considerable Mn3+ concentration can be considered as a high performance cathode material for Lithium ion batteries. (C) 2016 Elsevier Ltd. All rights reserved.
机译:通过聚合物辅助的溶胶-凝胶/静电纺丝并在大气中进行后热处理,合成了具有Fd3m空间群的类卡特彼勒尖晶石型LiNi0.5Mn1.5O4(LNMO)亚微米结构。 FESEM和TEM研究表明,新型的毛毛虫结构由60-100 nm尺寸的良好烧结和相互连接的纳米颗粒组成。使用X射线衍射和拉曼光谱研究证实了LNMO毛虫中Fd3m结构的存在。循环伏安法和恒电流充放电研究表明,LNMO毛虫中存在大量的Mn3(+)。与P4(3)32 LNMO溶胶加热粉末(1 C时为82 mAh / g)相比,LNMO毛毛虫结构在100次电荷放电后显示出高速率能力和出色的容量保持率(在1 C时为118 mAh / g)速率)在没有聚合物的情况下合成。 EIS研究表明,与LNMO溶胶加热粉末相比,LNMO毛毛虫的电荷转移电阻低(低4倍)。所制备的具有相当大的Mn3 +浓度的LNMO履带状结构可以认为是锂离子电池的高性能阴极材料。 (C)2016 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号