...
首页> 外文期刊>Electrochimica Acta >CNT-enhanced electrochemical property and sodium storage mechanism of Pb(NO3)(2) as anode material for Na-ion batteries
【24h】

CNT-enhanced electrochemical property and sodium storage mechanism of Pb(NO3)(2) as anode material for Na-ion batteries

机译:Pb(NO3)(2)作为Na离子电池负极材料的CNT增强电化学性能和钠储存机理

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

By using carbon nanotube (CNT), Pb(NO3)(2)/CNT is fabricated by a solution method and investigated for the first time as probable anode materials for sodium-ion batteries. For comparison, pristine Pb(NO3)(2) and Pb(NO3) (2)/carbon black (CB) are also prepared by the same solution method. Electrochemical results show that Pb(NO3)(2)/CNT can deliver an initial charge capacity of 285.7 mA h g(-1), which is much higher than the pristine Pb(NO3)(2) (203.8 mA h g(-1)) and Pb(NO3)(2)/CB (252.1 mA h g(-1)). After 50 cycles, Pb(NO3) 2/ CNT still maintains a sodium storage capacity of 112.9 mA h g(-1). Furthermore, it also shows outstanding rate property compared with other two samples. All the enhanced results can be attributed to the introduction of crosslinked CNTs in the composite, which provide good electronic conductive pathways interconnecting Pb(NO3)(2) particles and maintain the whole nano-micro structure upon repeated cycles. The reaction mechanism of Pb(NO3)(2) with Na is studied by various in-situ and ex-situ techniques. It can be found that Pb(NO3)(2)/CNT irreversibly decomposes into Pb, NaNO3, NaN3, and Na2O, and then the resulting metal Pb will further react with Na to form NaxPb alloys during the initial discharge process. In contrast, the charge process is mainly associated with the de-alloying reaction of NaxPb to the formation of Pb. (C) 2015 Elsevier Ltd. All rights reserved.
机译:通过使用碳纳米管(CNT),通过溶液法制备了Pb(NO3)(2)/ CNT,并首次研究了其作为钠离子电池的负极材料。为了进行比较,还通过相同的溶液法制备了原始的Pb(NO3)(2)和Pb(NO3)(2)/炭黑(CB)。电化学结果表明,Pb(NO3)(2)/ CNT的初始充电容量为285.7 mA hg(-1),远高于原始Pb(NO3)(2)(203.8 mA hg(-1)) )和Pb(NO3)(2)/ CB(252.1 mA hg(-1))。 50个循环后,Pb(NO3)2 / CNT仍保持112.9 mA h g(-1)的钠存储容量。此外,与其他两个样本相比,它还显示了出色的速率特性。所有增强的结果都可以归因于在复合材料中引入交联的CNT,这些碳纳米管提供了互连Pb(NO3)(2)粒子的良好电子导电路径,并在重复循环后保持了整个纳米微结构。通过各种原位和异位技术研究了Pb(NO3)(2)与Na的反应机理。可以发现,Pb(NO3)(2)/ CNT不可逆地分解为Pb,NaNO3,NaN3和Na2O,然后在初始放电过程中,所得金属Pb将与Na进一步反应形成NaxPb合金。相反,充电过程主要与NaxPb对Pb形成的脱合金反应有关。 (C)2015 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号