...
首页> 外文期刊>Electrochimica Acta >Synthesis of dense nanocavities inside TiO_2 nanowire array and its electrochemical properties as a three-dimensional anode material for Li-ion batteries
【24h】

Synthesis of dense nanocavities inside TiO_2 nanowire array and its electrochemical properties as a three-dimensional anode material for Li-ion batteries

机译:TiO_2纳米线阵列内部致密纳米腔的合成及其作为锂离子电池三维负极材料的电化学性能

获取原文
获取原文并翻译 | 示例
           

摘要

In this paper, a three-dimensional (3D) anode of dense nanocavities inside TiO_2 nanowire array (TNWA) was synthesized by a hydrothermal route using anodic TiO_2 nanotube array (TNTA) as a starting material. TNWA-D, which was prepared by the same hydrothermal route usingTi substrate directly, and TNTA were also studied for comparison. The morphology and crystal structure were studied by glancing angle X-ray diffraction (GAXRD), field emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM). The electrochemical performance was evaluated by galvanostatic charge-discharge tests and alternating current (AC) impedance spectroscopy, and the formation mechanisms of TNWA and TNWA-D were discussed. The results showed that TNWA had a unique nanostructure with long, fine and uniform nanowires, and it was worth noting that dense nanocavities distributed on the surface of nanowires, which enhanced the electrical conductivity and surface area greatly. The TNWA anodes exhibit higher electrochemical performance than that of TNTA and TNWA-D anodes. At 0.2 C rate, TNWA anode delivers the specific capacities of 305.8 mAh g~(-1), which is more than that of TNTA (288.4 mAh g~(-1)) and TNWA-D (29.1 mAh g~(-1)). After 50 cycles at different current densities, it still retains 257 mAh g~(-1). The electrochemical performance of TNWA-D anode is the worst one due to its poor electrical conductivity resulting from the large amounts of broken, litter and non-uniform nanowires.
机译:以阳极TiO_2纳米管阵列(TNTA)为原料,通过水热法合成了TiO_2纳米线阵列(TNWA)内部密集纳米腔的三维(3D)阳极。还直接研究了以相同的水热路线直接用Ti衬底制备的TNWA-D和TNTA的比较。通过掠射角X射线衍射(GAXRD),场发射扫描电子显微镜(FE-SEM)和透射电子显微镜(TEM)研究了形貌和晶体结构。通过恒电流充放电试验和交流(AC)阻抗谱对电化学性能进行了评估,并讨论了TNWA和TNWA-D的形成机理。结果表明,TNWA具有独特的纳米结构,具有长,细且均匀的纳米线,值得注意的是,致密的纳米腔分布在纳米线的表面,极大地提高了导电性和表面积。 TNWA阳极比TNTA和TNWA-D阳极具有更高的电化学性能。在0.2 C速率下,TNWA阳极的比容量为305.8 mAh g〜(-1),比TNTA(288.4 mAh g〜(-1))和TNWA-D(29.1 mAh g〜(-1)更高))。在不同的电流密度下经过50个循环后,它仍然保留257 mAh g〜(-1)。 TNWA-D阳极的电化学性能最差,这是由于大量断裂,乱抛和不均匀的纳米线造成的导电性差。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号