首页> 外文期刊>Inorganic Chemistry: A Research Journal that Includes Bioinorganic, Catalytic, Organometallic, Solid-State, and Synthetic Chemistry and Reaction Dynamics >What singles out the FeO~(2+) Moiety? A Density-Functional Theory Study of the Methane-to-Methanol Reaction Catalyzed by the First Row Transition-Metal Oxide Dications MO(H_2O)_p~(2+), M = V—Cu
【24h】

What singles out the FeO~(2+) Moiety? A Density-Functional Theory Study of the Methane-to-Methanol Reaction Catalyzed by the First Row Transition-Metal Oxide Dications MO(H_2O)_p~(2+), M = V—Cu

机译:什么能选出FeO〜(2+)部分?第一行过渡金属氧化物阳离子MO(H_2O)_p〜(2 +),M = V-Cu催化的甲烷制甲醇反应的密度泛函理论研究

获取原文
获取原文并翻译 | 示例
           

摘要

Metaloxo species are often postulated as key active species in oxidative catalysis. Among all, the quintet FeO~(2+) moiety is particularly widespread and active: aliphatic C-H bonds undergo hydroxylation easily through a H-abstraction/0-rebound mechanism. The high electrophilicity of quintet FeO~(2+) originates from its electronic structure: a low lying vacant σ~* can accept electronic density from the aliphatic C—H bond. What singles out this quintet FeO_(2+)? Its lowest vacant acceptor orbital energy? its shape (σ~* vs π~*)? or has its biological importance more simply arisen from the high iron abundance? To answer those questions, we have performed density-functional theory calculations to study systematically the methane-to-methanol reaction catalyzed by MO(H-2O)_P/~(2+) complexes (M = V, Cr, Mn, Fe, Co, p = 5 and M = Ni, Cu, p = 4) in gas phase. We show here that the lower the Mo~(2+) acceptor orbital lies in energy, the lower the H-abstraction barrier is in general. However, a σ~* acceptor orbital is much more efficient than a π~* acceptor orbital for a given energy. Finally, we found that indeed, the FeO~(2+) moiety is particularly efficient but also CoO~(2+) and MnO~(2+) could be good candidates to perform C-H hydroxylation.
机译:金属氧物种通常被假定为氧化催化中的关键活性物种。其中,五重体FeO〜(2+)部分特别广泛且具有活性:脂族C-H键很容易通过H吸收/ 0反弹机制进行羟基化。五重态FeO〜(2+)的高亲电子性源于其电子结构:较低的空位σ〜*可以接受来自脂肪族CH键的电子密度。是什么选出五重奏FeO_(2+)?其最低的空受体轨道能量?它的形状(σ〜*与π〜*)?还是它的生物学重要性更简单地由高铁含量引起?为了回答这些问题,我们进行了密度泛函理论计算,系统地研究了MO(H-2O)_P /〜(2+)配合物(M = V,Cr,Mn,Fe, Co,p = 5,M = Ni,Cu,p = 4)在气相中。我们在此表明​​,Mo〜(2+)受体轨道的能量越低,通常其H吸收势垒就越低。但是,对于给定的能量,σ〜*受体轨道比π〜*受体轨道有效得多。最后,我们发现确实,FeO〜(2+)部分特别有效,但CoO〜(2+)和MnO〜(2+)可能是进行C-H羟基化的良好候选者。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号