首页> 外文期刊>International Journal of Quantum Chemistry >The Kernel energy method: Application to graphene and extended aromatics
【24h】

The Kernel energy method: Application to graphene and extended aromatics

机译:核能方法:在石墨烯和扩展芳烃中的应用

获取原文
获取原文并翻译 | 示例
       

摘要

The quantum chemistry of finite aperiodic graphene flakes is a matter of considerable interest because of the anticipated technological importance of such objects. Since real aperiodic graphene flakes will in general be composed of many thousands of carbon atoms, theoretical methods appropriate to such large molecules would need to be used for the ab initio quantum calculation of their properties. The Kernel energy method is discussed here, and it is shown to be accurately applicable to graphenes and analogous extended aromatic molecules. It is necessary to define the kernels of a graphene molecule in a new way because of the extensive aromaticity, which defines its electronic structure. The kernels used in the reconstruction of the full graphene sheet preserve the total number of π-electrons, Clar sextets, and the approximate overall aromaticity. Sivaramakrishnan et al. [J Phys Chem A, 2005, 109, 1621] define similar "ring conserved isodesmic reactions (RCIR)." The principal innovation of this article is the suggestion that kernels may be mathematically extracted from an extended aromatic molecule such as graphene by a fissioning of aromatic bonds. Hartree Fock (HF) and M?ller-Plesset (MP2) chemical models using a Gaussian basis of 3-21G orbitals are used to calculate the total energy of a graphene flake. This demonstration calculation is performed on a graphene flake in which dangling bonds are saturated with hydrogens (C _(78)H_(26)) composed of a total of 104 atoms arranged in 27 benzenoid rings. The KEM with both types of chemical model are shown to be accurate to nearly 1 kcal/mol, of a total energy, which is nearly 3000 atomic units, that is, with an absolute error within "chemical accuracy" and a relative error of the order of 5 × 10~5% of the total energy.
机译:有限非周期性石墨烯薄片的量子化学是一个令人关注的问题,因为这种物体的预期技术重要性。由于实际的非周期性石墨烯薄片通常将由数千个碳原子组成,因此需要使用适合此类大分子的理论方法从头开始对其性质进行量子计算。此处讨论了核能方法,结果表明该方法可精确地应用于石墨烯和类似的扩展芳族分子。由于广泛的芳香性决定了其电子结构,因此有必要以一种新的方式来定义石墨烯分子的核。完整石墨烯片的重建中使用的核保留了π电子,Clar六边形的总数以及近似的整体芳香性。 Sivaramakrishnan等。 [J Phys Chem A,2005,109,1621]定义了类似的“环保守的等渗反应(RCIR)”。本文的主要创新之处在于,建议可以通过芳族键的裂变从扩展的芳族分子(例如石墨烯)中数学提取核仁。使用3-21G轨道的高斯基础的Hartree Fock(HF)和M?ller-Plesset(MP2)化学模型用于计算石墨烯薄片的总能量。该演示计算是在石墨烯薄片上执行的,该石墨烯薄片的悬挂键被氢(C _(78)H_(26))饱和,该氢由排列在27个苯环中的总共104个原子组成。两种化学模型的KEM均显示精确到接近1 kcal / mol的总能量,接近3000原子单位,也就是说,绝对误差在“化学精确度”之内,相对误差为占总能量的5×10〜5%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号