首页> 外文期刊>International Journal of Quantum Chemistry >Three Approximations to the Nonlocal and Energy-Dependent Correlation Potential in Electron Propagator Theory
【24h】

Three Approximations to the Nonlocal and Energy-Dependent Correlation Potential in Electron Propagator Theory

机译:电子传播理论中非局部和能量相关的相关势的三个近似

获取原文
获取原文并翻译 | 示例
       

摘要

The historical dilemma that pits accuracy against interpretability in molecular electronic structure calculations may be resolved with electron propagator theory. In the interpretation of electron binding energies, electron propagator theory provides a systematically improvable description of electron correlation while retaining one-electron concepts, such as Dyson orbitals, of wide-ranging interpretive facility. The nonlocal, energy-dependent correlation potential, known as the self-energy, which occurs in the one-electron equations of electron propagator theory may be approximated in practical calculations. The partial third-order approximation has been employed in many calculations on large molecules. Applications to fragments of nucleic acids show how qualitative, orbital-based insights emerge from calculations that suffice to quantitatively assign photoelectron spectra. A quasiparticle virtual orbital method for improving the efficiency of this method shows considerable promise. Simple perturbative approaches may be combined with renormalizations that incorporate finalstate orbital relaxation effects with the use of reference ensembles that correspond to Slater’s transition state method. Such approximations produce useful predictions for core as well as valence electron binding energies. Another approximation that is based on highly correlated reference states and a renormalized treatment of the self-energy shows considerable flexibility in the accurate prediction of electron binding energies. This method suffices to make definitive assignments of photoelectron spectra of double Rydberg anions, species whose ground state electronic structure requires assignment of electrons to nonvalence orbitals.
机译:在分子电子结构计算中使准确性与可解释性相抵触的历史困境可以通过电子传播理论来解决。在电子束缚能的解释中,电子传播理论提供了系统相关的电子相关描述,同时保留了范围广泛的解释工具的单电子概念,例如戴森轨道。在电子传播理论的单电子方程中出现的非局部的,与能量有关的相关势,称为自能量,可以在实际计算中近似。在大分子的许多计算中已经采用了部分三阶逼近。核酸片段的应用表明,从足以定性分配光电子能谱的计算中,如何得出基于定性的基于轨道的见解。一种改进这种方法效率的准粒子虚拟轨道方法显示出可观的前景。可以将简单的摄动方法与重新归一化相结合,后者使用与Slater的过渡态方法相对应的参考合奏来合并最终状态的轨道弛豫效应。这样的近似对核以及价电子结合能产生有用的预测。基于高度相关的参考状态和对自能的重新归一化处理的另一种近似方法在准确预测电子结合能方面显示出相当大的灵活性。该方法足以确定双里德堡阴离子的光电子光谱,这是其基态电子结构需要将电子分配给非价轨道的物质。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号