首页> 外文期刊>Analytical chemistry >Rational Design of Bioelectrochemically Multifunctional Film with Oxidase, Ferrocene, and Graphene Oxide for Development of in Vivo Electrochemical Biosensors
【24h】

Rational Design of Bioelectrochemically Multifunctional Film with Oxidase, Ferrocene, and Graphene Oxide for Development of in Vivo Electrochemical Biosensors

机译:用于体内电化学生物传感器开发的具有氧化酶,二茂铁和氧化石墨烯的生物电化学多功能薄膜的合理设计

获取原文
获取原文并翻译 | 示例
           

摘要

This study demonstrates a new strategy to develop in vivo electrochemical biosensors through rational design and simple formation of bioelectrochemically multifunctional film (BMF). The BMF is rationally designed by first efficiently incorporating oxidase, ferrocene mediator, and graphene oxide into polymaleimidostyrene/polystyrene (PMS/PS) matrix to form a homogeneous mixture and then simply formed by drop-coating the mixture onto solid conducting substrate. By using the as-formed BMF, electrochemical biosensors could be constructed with a technical simplicity and high reproducibility. To illustrate the BMF-based biosensors for in-vivo applications, we directly couple the biosensors to in vivo microdialysis to establish an online electrochemical system (OECS) for in vivo monitoring of glucose in rat auditory cortex during salicylate-induced tinnitus model. The OECS with the BMF-based biosensor as the detector shows a linear response toward glucose within a concentration range from 50 to 500 mu M with a detection limit of 10 mu M (S/N = 3). Additionally, the OECS is stable and does not suffer from the interference from the electroactive species endogenously coexisting in the brain microdialysate. With the BMF-based OECS, the basal level of glucose in the microdialysate continuously sampled from rat auditory cortex is determined to be 120 +/- 10 mu M (n = 5). After the rats were administrated with salicylate to induce transient tinnitus, the microdialysate glucose concentration in the rat auditory cortex remarkably increased to 433 +/- 190 mu M (n = 5) at the time point of 1.5 h. This study essentially offers a new, technically simple and reproducible approach to development of in vivo electrochemical biosensors, which is envisaged to be relatively useful for understanding of the molecular basis of brain functions.
机译:这项研究表明通过合理的设计和生物电化学多功能膜(BMF)的简单形成来开发体内电化学生物传感器的新策略。通过首先将氧化酶,二茂铁介体和氧化石墨烯有效地掺入聚马来酰亚胺苯乙烯/聚苯乙烯(PMS / PS)基质中以形成均匀混合物,然后通过将混合物滴涂到固体导电基材上来简单地形成BMF,从而进行合理设计。通过使用形成的BMF,可以以技术简单和高再现性来构造电化学生物传感器。为了说明用于体内应用的基于BMF的生物传感器,我们将生物传感器直接耦合至体内微透析,以建立在线电化学系统(OECS),用于在水杨酸盐诱导的耳鸣模型中体内监测大鼠听觉皮层中的葡萄糖。使用基于BMF的生物传感器作为检测器的OECS在50至500μM的浓度范围内显示出对葡萄糖的线性响应,检测极限为10μM(S / N = 3)。另外,OECS是稳定的,不会受到脑微透析液中内源共存的电活性物质的干扰。使用基于BMF的OECS,从大鼠听觉皮层连续采样的微透析液中的葡萄糖基础含量确定为120 +/- 10μM(n = 5)。给大鼠注射水杨酸酯以诱发短暂性耳鸣后,在1.5 h的时间点,大鼠听觉皮层中的微透析液葡萄糖浓度显着增加至433 +/- 190μM(n = 5)。这项研究实质上为体内电化学生物传感器的开发提供了一种新的,技术上简单且可重现的方法,该方法被认为对于理解脑功能的分子基础相对有用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号