...
首页> 外文期刊>Analytical chemistry >Effect of Adduct Formation with Molecular Nitrogen on the Measured Collisional Cross Sections of Transition Metal-1,10-Phenanthroline Complexes in Traveling Wave Ion-Mobility Spectrometry: N-2 Is Not Always an 'Inert' Buffer Gas
【24h】

Effect of Adduct Formation with Molecular Nitrogen on the Measured Collisional Cross Sections of Transition Metal-1,10-Phenanthroline Complexes in Traveling Wave Ion-Mobility Spectrometry: N-2 Is Not Always an 'Inert' Buffer Gas

机译:分子氮加合物的形成对行波离子迁移谱中过渡金属-1,10-菲咯啉配合物的碰撞截面的测量:N-2并不总是“惰性”缓冲气体

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The number of separations and analyses of molecular species using traveling wave ion-mobility spectrometry-mass spectrometry (TWIMS-MS) is increasing, including those extending the technique to analytes containing metal atoms. A critical aspect of such applications of TWIMS-MS is the validity of the collisional cross sections (CCSs) measured and whether they can be accurately calibrated against other ion-mobility spectrometry (IMS) techniques. Many metal containing species have potential reactivity toward molecular nitrogen, which is present in high concentration in the typical Synapt-G2 TWIMS cell. Here, we analyze the effect of nitrogen on the drift time of a series of cationic 1,10-phenanthroline complexes of the late transition metals, [(phen)M](+), (M = Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, and Hg) in order to understand potential deviations from expected drift time behaviors. These metal complexes were chosen for their metal open-coordination site and lack of rotameric species. The target species were generated via electrospray ionization (ESI), analyzed using TWIMS in N-2 drift gas, and the observed drift time trends compared. Theoretically derived CCSs for all species (via both the projection approximation and trajectory method) were also compared. The results show that, indeed, for metal containing species in this size regime, reaction with molecular nitrogen has a dramatic effect on measured drift times and must not be ignored when comparing and interpreting TWIMS arrival time distributions. Density-functional theory (DFT) calculations are employed to analyze the periodic differences due to the metal's interaction with nitrogen (and background water) in detail.
机译:使用行波离子淌度质谱法(TWIMS-MS)进行分子种类的分离和分析的数量正在增加,包括那些将技术扩展到包含金属原子的分析物的技术。 TWIMS-MS的此类应用的一个关键方面是所测量的碰撞截面(CCS)的有效性以及它们是否可以相对于其他离子迁移谱(IMS)技术进行准确校准。许多含金属的物质对分子氮具有潜在的反应性,在典型的Synapt-G2 TWIMS细胞中以高浓度存在。在这里,我们分析了氮对晚过渡金属[[(phen)M](+),(M = Ni,Pd,Pt,Cu,+)的一系列阳离子1,10-菲咯啉配合物的漂移时间的影响。 Ag,Au,Zn,Cd和Hg),以了解与预期漂移时间行为的潜在偏差。选择这些金属配合物是因为它们的金属开放配位位点和缺乏旋转异构体。通过电喷雾电离(ESI)生成目标物质,使用TWIMS在N-2漂移气体中进行分析,并比较观察到的漂移时间趋势。从理论上推导了所有物种的CCS(通过投影逼近和轨迹法)。结果表明,实际上,对于在这种尺寸范围内的含金属物质,与分子氮的反应对测得的漂移时间具有显着影响,在比较和解释TWIMS到达时间分布时不可忽略。密度泛函理论(DFT)计算用于详细分析由于金属与氮(和背景水)相互作用而引起的周期性差异。

著录项

相似文献

  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号