首页> 外文期刊>Analytical chemistry >Fluorescence-Correlation Spectroscopy Study of Molecular Transport within Reversed-Phase Chromatographic Particles Compared to Planar Model Surfaces
【24h】

Fluorescence-Correlation Spectroscopy Study of Molecular Transport within Reversed-Phase Chromatographic Particles Compared to Planar Model Surfaces

机译:与平面模型表面相比,反相色谱颗粒内分子迁移的荧光相关光谱研究

获取原文
获取原文并翻译 | 示例
       

摘要

Reversed-phase liquid chromatography (RPLC) is a widely used technique for molecular separations. Stationary-phase materials for RPLC generally consist of porous silica-gel particles functionalized with n-alkane ligands. Understanding motions of molecules within the interior of these particles is important for developing efficient chromatographic materials and separations. To characterize these dynamics, time-resolved spectroscopic methods (photobleach recovery, fluorescence correlation, single-molecule imaging) have been adapted to measure molecular diffusion rates, typically at n-alkane-modified planar silica surfaces, which serve as models of chromatographic interfaces. A question arising from these studies is how dynamics of molecules on a planar surface relate to motions of molecules within the interior of a porous chromatographic particle. In this paper, imaging-fluorescence-correlation spectroscopy is used to measure diffusion rates of a fluorescent probe molecule 1,1'-dioctadecyl-3,3,3?3?-tetramethylindocarbocyanine perchlorate (DiI) within authentic RPLC porous silica particles and compared with its diffusion at a planar C-18-modified surface. The results show that surface diffusion on the planar C-18 substrate is much faster than the diffusion rate of the probe molecule through a chromatographic particle. Surface diffusion within porous particles, however, is governed by molecular trajectories along the tortuous contours of the interior surface of the particles. By accounting for the greater surface area that a molecule must explore to diffuse macroscopic distances through the particle, the molecular-scale diffusion rates on the two surfaces can be compared, and they are virtually identical. These results provide support for the relevance of surface-diffusion measurements made on planar model surfaces to the dynamic behavior of molecules on the internal surfaces of porous chromatographic particles.
机译:反相液相色谱(RPLC)是一种广泛用于分子分离的技术。 RPLC的固定相材料通常由用正烷烃配体官能化的多孔硅胶颗粒组成。了解这些粒子内部分子的运动对于开发有效的色谱材料和分离非常重要。为了表征这些动力学,已采用时间分辨光谱方法(光漂白回收,荧光相关,单分子成像)来测量分子扩散速率,通常是在正构烷烃改性的平面二氧化硅表面上,用作色谱界面模型。这些研究引起的问题是,平面表面上的分子动力学与多孔色谱颗粒内部的分子运动如何相关。本文采用成像-荧光相关光谱法测量了荧光探针分子1,1'-二十八烷基-3,3,3′3′-四甲基吲哚碳菁高氯酸盐(DiI)在正宗RPLC多孔二氧化硅颗粒中的扩散速率并进行了比较其扩散在平面的C-18改性表面上。结果表明,在平面C-18基底上的表面扩散比探针分子通过色谱颗粒的扩散速度快得多。但是,多孔颗粒内的表面扩散是由沿着颗粒内表面曲折轮廓的分子轨迹控制的。通过考虑分子必须探索的更大表面积以扩散宏观距离穿过粒子,可以比较两个表面上分子尺度的扩散速率,并且它们实际上是相同的。这些结果为在平面模型表面上进行的表面扩散测量与多孔色谱颗粒内表面上分子的动态行为的相关性提供了支持。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号