首页> 外文期刊>Analytical chemistry >Raman Spectroscopy--An Innovative and Versatile Tool To Follow the Respirational Activity and Carbonate Biomineralization of Important Cave Bacteria
【24h】

Raman Spectroscopy--An Innovative and Versatile Tool To Follow the Respirational Activity and Carbonate Biomineralization of Important Cave Bacteria

机译:拉曼光谱法-一种创新的多功能工具,可追踪重要洞穴细菌的呼吸活动和碳酸盐生物矿化

获取原文
获取原文并翻译 | 示例
       

摘要

Raman gas spectrometry is introduced as a unique tool for the investigation of the respiratory activity that is indicative for growth of bacteria involved in biomineralization. Growth of these bacteria cannot be monitored using conventional turbidity-based optical density measurements due to concomitant mineral formation in the medium. The respiratory activity of carbonate-precipitating Arthrobacter sulfonivorans, isolated from the recently discovered Herrenberg Cave, was investigated during its lifecycle by means of innovative cavity-enhanced Raman gas analysis. This method allowed rapid and nonconsumptive online quantification of CO_2 and O_2 in situ in the headspace of the bacterial culture. Carbon dioxide production rates of A. sulfonivorans showed two maxima due to its pleomorphic growth lifecycle. In contrast, only one maximum was observed in control organism Pseudomonas fluorescens with a one-stage lifecycle. Further insight into the biomineralization process over time was provided by a combination of Raman macro- and microspectroscopy. With the help of this spatially resolved chemical imaging of the different types of calcium carbonate minerals, it was elucidated that the surface of the A. sulfonivorans bacterial cells served as nuclei for biomineralization of initially spherical vaterite precipitates. These vaterite biominerals continued growing as chemically stable rock-forming calcite crystals with rough edges. Thus, the utilization of innovative Raman multigas spectroscopy, combined with Raman mineral analysis, provided novel insights into microbial-mediated biomineralization and, therefore, provides a powerful methodology in the field of environmental sciences.
机译:引入拉曼光谱法作为研究呼吸活动的独特工具,该活动指示参与生物矿化的细菌的生长。这些细菌的生长无法使用常规的基于浊度的光密度测量法进行监测,因为介质中会伴随形成矿物质。通过创新的腔增强拉曼气体分析技术,从其最近发现的黑伦贝格洞穴分离出了碳酸盐沉淀的节杆菌亚硫酸盐的呼吸活动。这种方法可以在细菌培养液的顶部空间快速,非消耗性地在线定量CO_2和O_2。由于其多态性生长生命周期,A。sulfonivorans的二氧化碳生产率显示出两个最大值。相反,在具有一阶段生命周期的对照生物荧光假单胞菌中仅观察到一个最大值。通过结合拉曼宏观光谱和显微光谱,可以对生物矿化过程随时间的进一步了解。在空间分辨的不同类型的碳酸钙矿物的化学成像的帮助下,阐明了亚磺酸曲霉细菌细胞的表面充当了最初球形球v石沉淀物生物矿化的核。这些球ate石生物矿物继续以化学稳定的,具有粗糙边缘的成岩方解石晶体生长。因此,创新的拉曼多气体光谱技术与拉曼矿物分析的结合使用,为微生物介导的生物矿化提供了新颖的见解,因此,为环境科学领域提供了强大的方法论。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号