首页> 外文期刊>Analytical chemistry >Influence of Surface Adsorption on the Interfacial Electron Transfer of Flavin Adenine Dinucleotide and Glucose Oxidase at Carbon Nanotube and Nitrogen-Doped Carbon Nanotube Electrodes
【24h】

Influence of Surface Adsorption on the Interfacial Electron Transfer of Flavin Adenine Dinucleotide and Glucose Oxidase at Carbon Nanotube and Nitrogen-Doped Carbon Nanotube Electrodes

机译:表面吸附对碳纳米管和掺氮碳纳米管电极上黄素腺嘌呤二核苷酸和葡萄糖氧化酶的界面电子转移的影响

获取原文
获取原文并翻译 | 示例
           

摘要

The adsorption of flavin adenine dinucleotide (FAD) and glucose oxidase (GOx) onto carbon nanotube (CNT) and nitrogen-doped CNT (N-CNT) electrodes was investigated and found to obey Langmuir adsorption isotherm characteristics. The amount adsorbed and adsorption maximum are dependent on exposure time, the concentration of adsorbate, and the ionic strength of the solution. The formal potentials measured for FAD and GOx are identical, indicating that the observed electroactivity is from FAD, the redox reaction center of GOx. When glucose is added to GOx adsorbed onto CNT/N-CNT electrodes, direct electron transfer (DET) from enzyme-active FAD is not observed. However, efficient mediated electron transfer (MET) occurs if an appropriate electron mediator is placed in solution, or the natural electron mediator oxygen is used, indicating that GOx is adsorbed and active on CNT/N-CNT electrodes. The observed surface-confined redox reaction at both CNT and N-CNT electrodes is from FAD that either specifically adsorbs from solution or adsorbs from the holoprotein subsequently inactivating the enzyme. The splitting of cathodic and anodic peak potentials as a function of scan rate provides a way to measure the heterogeneous electron-transfer rate constant (k_s) using Laviron's method. However, the measured k_s was found to be under ohmic control, not under the kinetic control of an electron-transfer reaction, suggesting that k_s for FAD on CNTs is faster than the measured value of 7.6 s~(-1).
机译:研究了黄素腺嘌呤二核苷酸(FAD)和葡萄糖氧化酶(GOx)在碳纳米管(CNT)和氮掺杂的CNT(N-CNT)电极上的吸附,并服从Langmuir吸附等温线特性。吸附量和最大吸附量取决于暴露时间,被吸附物的浓度和溶液的离子强度。 FAD和GOx的形式电势相同,表明观察到的电活性来自GOx的氧化还原反应中心FAD。将葡萄糖添加到吸附在CNT / N-CNT电极上的GOx中时,未观察到来自酶活性FAD的直接电子转移(DET)。但是,如果在溶液中放置了适当的电子介体,或者使用了自然电子介体氧,则会发生有效的介导电子转移(MET),这表明GOx在CNT / N-CNT电极上被吸附并具有活性。在CNT和N-CNT电极处观察到的表面受限氧化还原反应来自FAD,该FAD特异性地从溶液中吸附或从全蛋白中吸附,随后使酶失活。阴极和阳极峰值电势随扫描速率的变化提供了一种使用Laviron方法测量异质电子传输速率常数(k_s)的方法。然而,发现所测量的k_s是在欧姆控制下,而不是在电子转移反应的动力学控制下,这表明CNT上的FAD的k_s比7.6s〜(-1)的测量值更快。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号