...
首页> 外文期刊>Analytical chemistry >Differential Solute Gas Response in Ionic-Liquid-Based QCM Arrays: Elucidating Design Factors Responsible for Discriminative Explosive Gas Sensing
【24h】

Differential Solute Gas Response in Ionic-Liquid-Based QCM Arrays: Elucidating Design Factors Responsible for Discriminative Explosive Gas Sensing

机译:基于离子液体的QCM阵列中的差分溶质气体响应:阐明负责判别性爆炸性气体传感的设计因素

获取原文
获取原文并翻译 | 示例
           

摘要

An eight-sensor array coupling a chemoselective room-temperature ionic liquid (RTIL) with quartz crystal microbalance (QCM) transduction is presented in this work in order to demonstrate the power of this approach in differentiating closely related analytes in sensory devices. The underlying mechanism behind the specific sensory response was explored by (i) studying mass loading and viscoelasticity effects of the sensing layers, predominantly through variation in damping impedance, the combination of which determines the sensitivity; (ii) creation of a solvation model based on Abraham's solvation descriptors which reveals the fact that polarizability and lipophilicity are the main factors influencing the dissolution of gas analytes into the RTILs; and (iii) determination of enthalpy and entropy values for the studied interactions and comparison via a simulation model, which is also effective for pattern discrimination, in order to establish a foundation for the analytical scientist as well as inspiration for synthetic pathways and innovative research into next-generation sensory approaches. The reported sensors displayed an excellent sensitivity with detection limit of <0.2percent, fast response and recovery, and a workable temperature range of 27-55 deg C and even higher. Linear discriminant analysis (LDA) showed a discrimination accuracy of 86-92percent for nitromethane and 1-ethyl-2-nitrobenzene, 71percent for different mixtures of nitromethane, and 100percent for these analytes when thermodynamic parameters were used as input data. We envisage applications to detecting other nitroaromatics and security-related gas targets, and high-temperature or real-time situations where manual access is restricted, opening up new horizons in chemical sensing.
机译:这项工作提出了一种八传感器阵列,该阵列将化学选择性室温离子液体(RTIL)与石英晶体微量天平(QCM)转导相结合,以证明该方法在区分传感设备中紧密相关的分析物方面的功效。 (i)研究传感层的质量负载和粘弹性效应,主要是通过阻尼阻抗的变化来研究,具体的感觉响应背后的潜在机制是由阻尼阻抗的变化决定的; (ii)基于亚伯拉罕的溶剂化描述符创建溶剂化模型,该模型揭示了以下事实:极化率和亲脂性是影响气体分析物向RTIL溶解的主要因素; (iii)确定所研究相互作用的焓和熵值,并通过模拟模型进行比较,这对于模式识别也是有效的,从而为分析科学家奠定基础并为合成途径和创新研究提供灵感下一代的感觉方法。报告的传感器显示出极佳的灵敏度,检测限<0.2%,响应速度和恢复速度快,可工作温度范围为27-55℃甚至更高。线性判别分析(LDA)显示,当使用热力学参数作为输入数据时,对硝基甲烷和1-乙基-2-硝基苯的鉴别准确度为86-92%,对于硝基甲烷的不同混合物为71%,对于这些分析物为100%。我们设想将这些应用程序检测到其他硝基芳烃和与安全相关的气体目标,以及手动访问受限的高温或实时情况,为化学传感开辟新的领域。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号