首页> 外文期刊>American Journal of Physiology >Polarity reversal lowers activation time during diastolic field stimulation of the rabbit ventricles: insights into mechanisms.
【24h】

Polarity reversal lowers activation time during diastolic field stimulation of the rabbit ventricles: insights into mechanisms.

机译:极性反转降低了兔子心室舒张期场刺激过程中的激活时间:深入研究机理。

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

To fully characterize the mechanisms of defibrillation, it is necessary to understand the response, within the three-dimensional (3D) volume of the ventricles, to shocks given in diastole. Studies that have examined diastolic responses conducted measurements on the epicardium or on a transmural surface of the left ventricular (LV) wall only. The goal of this study was to use optical imaging experiments and 3D bidomain simulations, including a model of optical mapping, to ascertain the shock-induced virtual electrode and activation patterns throughout the rabbit ventricles following diastolic shocks. We tested the hypothesis that the locations of shock-induced regions of hyperpolarization govern the different diastolic activation patterns for shocks of reversed polarity. In model and experiment, uniform-field monophasic shocks of reversed polarities (cathode over the right ventricle is RV-, reverse polarity is LV-) were applied to the ventricles in diastole. Experiments and simulations revealed that RV- shocks resulted in longer activation times compared with LV- shocks of the same strength. 3D simulations demonstrated that RV- shocks induced a greater volume of hyperpolarization at shock end compared with LV- shocks; most of these hyperpolarized regions were located in the LV. The results of this study indicate that ventricular geometry plays an important role in both the location and size of the shock-induced virtual anodes that determine activation delay during the shock and subsequently affect shock-induced propagation. If regions of hyperpolarization that develop during the shock are sufficiently large, activation delay may persist until shock end.
机译:为了充分表征除颤机制,有必要了解在心室的三维(3D)体积内对舒张期电击的反应。检查舒张反应的研究仅在心外膜或左心室(LV)壁的透壁表面进行测量。这项研究的目的是使用光学成像实验和3D双域模拟(包括光学映射模型)来确定舒张性休克后休克引起的虚拟电极和整个兔心室的激活模式。我们测试了以下假设,即超极性电击诱发区域的位置控制着相反极性电击的不同舒张激活模式。在模型和实验中,将反极性的均匀电场单相电击(右心室上的阴极为RV-,反极性为LV-)应用于舒张期的心室。实验和模拟显示,与相同强度的LV震动相比,RV震动导致更长的激活时间。 3D模拟表明,与LV休克相比,RV休克在休克末期引起更大的超极化量。这些超极化区域中的大多数位于左室。这项研究的结果表明,心室几何形状在冲击诱发的虚拟阳极的位置和大小中都起着重要作用,虚拟阳极决定了冲击期间的激活延迟并随后影响冲击诱发的传播。如果在电击期间形成的超极化区域足够大,则激活延迟可能会持续到电击结束。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号