首页> 外文期刊>ACS applied materials & interfaces >Dissimilar Crystal Dependence of Vanadium Oxide Cathodes in Organic Carbonate and Safe Ionic Liquid Electrolytes
【24h】

Dissimilar Crystal Dependence of Vanadium Oxide Cathodes in Organic Carbonate and Safe Ionic Liquid Electrolytes

机译:钒酸盐在有机碳酸盐和安全离子液体电解质中的晶体依赖性不同

获取原文
获取原文并翻译 | 示例
       

摘要

Advances in Li metal anode stabilization, solidstate electrolytes, and capabilities to insert a variety of active ions (Li+, Na+, Mg2+, and Al3+) have renewed the interest in layered vanadium oxides. Here we show that crystal characteristics such as size and crystallinity are fundamental variables that control the dissimilar electrochemical capabilities of 1D vanadium oxides immersed in different electrolytes (organic carbonates and safe electrolytes containing 80% of ionic liquid). We show that this opposite behavior can be understood in terms of a subtle interplay between crystal characteristics (size and crystallinity), electrolyte degradability, and the ionic conductivity of the electrolyte. Thus, through this control we are able to obtain pure 1D vanadium oxides that show reversibility in carbonate electrolytes at a cutoff voltage of 1.5 V (voltage region where insertion of more than two lithium ions is possible). Furthermore, these materials are able to uptake ca. 1.0 mol of Li at a rate of 20C (1C = 295 mAh/g) and retain excellent capabilities (Coulombic efficiency of 98% after 200 cycles at a rate of SC). Finally, what, to our knowledge, is really remarkable is that this optimization allows building vanadium oxide electrodes with an excellent electrochemical response in a safe electrolyte composition (80% of ionic liquid). Specifically, we reach uptakes also at a cutoff voltage of 1.5 V of ca. 1.0 mol of Li after 200 cycles at SC (charge/discharge) with Coulombic efficiencies higher than 99.5%.
机译:Li金属阳极稳定性,固态电解质以及插入各种活性离子(Li +,Na +,Mg2 +和Al3 +)的能力的进步,已经引起了人们对分层钒氧化物的兴趣。在这里,我们显示出晶体特性(例如大小和结晶度)是基本变量,这些变量控制一维钒氧化物浸没在不同电解质(有机碳酸盐和含有80%离子液体的安全电解质)中的不同电化学性能。我们表明,这种相反的行为可以通过晶体特性(尺寸和结晶度),电解质可降解性和电解质的离子电导率之间的微妙相互作用来理解。因此,通过这种控制,我们能够获得纯的一维钒氧化物,在1.5 V的截止电压(可能插入两个以上锂离子的电压区域)中,碳酸盐电解质中显示可逆性。此外,这些材料能够吸收约。 1.0 mol的Li在20C的速率下(1C = 295 mAh / g)并保持出色的性能(以SC的速率在200次循环后库伦效率为98%)。最后,据我们所知,真正引人注目的是,这种优化可以在安全的电解质成分(80%的离子液体)中构建具有出色的电化学响应的氧化钒电极。具体来说,我们还在约1.5 V的截止电压下达到吸收。在SC(充电/放电)下200个循环后,1.0 mol Li的库仑效率高于99.5%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号