首页> 外文期刊>ACS applied materials & interfaces >Supercapacitors Based on Reduced Graphene Oxide Nanofibers Supported Ni(OH)(2) Nanoplates with Enhanced Electrochemical Performance
【24h】

Supercapacitors Based on Reduced Graphene Oxide Nanofibers Supported Ni(OH)(2) Nanoplates with Enhanced Electrochemical Performance

机译:基于减少的氧化石墨烯纳米纤维的超级电容器支撑具有增强的电化学性能的Ni(OH)(2)纳米板

获取原文
获取原文并翻译 | 示例
       

摘要

Pseudocapacitive materials are critical to the development of supercapacitors but usually suffer froth poor conductivity and bad cycling property. Here, we describe the production of novel graphene oxide nanofibers (GONFs) via a partial oxidization and exfoliation method and concurrently report that highly crystallized Ni(OH)(2) nanoplates uniformly grow on reduced GONFs' outer graphene nanosheets through the hydrothermal method. Because of their unique structure with high electric conductivity, the rGONF/Ni(OH)(2) composite exhibits superior specific capacitance (SC), favorable rate capability and enhanced cycling stability relative to other composites or hybrids, e.g., 1433 F g(-1) at 5 mV s(-1) scan rate, 986 F g(-1) at 40 mV s(-1), and 90.5% capacitance retention after 2000 cycles, and as-fabricated rGONF/Ni(OH)(2)//active carbon asymmetric supercapacitor (ASC) exhibits a remarkable energy density and a 85.3% high retention (44.1 Wh kg(-1) at 467 W kg(-1) and 37.6 Wh kg(-1) at 3185 W kg(-1)) with a wide potential window of 0-1.7 V. Therefore, this study shows that rGONFs offers an exciting opportunity as substrate materials for supercapacior applications and opens up a new pathway for design and manufacture of novel supercapacitor electrode materials.
机译:伪电容材料对于超级电容器的发展至关重要,但通常会遇到泡沫,导电性差和循环性能差的问题。在这里,我们描述了通过部分氧化和剥落方法生产新型氧化石墨烯纳米纤维(GONFs)的方法,同时报道了通过水热法在还原的GONFs外部石墨烯纳米片上高度结晶的Ni(OH)(2)纳米板均匀生长。由于它们具有高导电性的独特结构,rGONF / Ni(OH)(2)复合材料相对于其他复合材料或杂化材料,例如1433 F g(-),具有优越的比电容(SC),良好的倍率能力和增强的循环稳定性。 1)在5 mV s(-1)的扫描速率下,在40 mV s(-1)的986 F g(-1)和2000次循环后的90.5%电容保持率,以及制成的rGONF / Ni(OH)(2 )//活性炭非对称超级电容器(ASC)表现出显着的能量密度和85.3%的高保留率(467 W kg(-1)时为44.1 Wh kg(-1)和3185 W kg((37.6 Wh时) -1))的电位窗口范围为0-1.7V。因此,本研究表明,rGONFs作为超级电容器应用的基底材料提供了令人兴奋的机会,并为新型超级电容器电极材料的设计和制造开辟了一条新途径。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号