首页> 外文期刊>ACS applied materials & interfaces >Control of Electronic Structures and Phonon Dynamics in Quantum Dot Superlattices by Manipulation of Interior Nanospace
【24h】

Control of Electronic Structures and Phonon Dynamics in Quantum Dot Superlattices by Manipulation of Interior Nanospace

机译:通过操纵内部纳米空间来控制量子点超晶格中的电子结构和声子动力学。

获取原文
获取原文并翻译 | 示例
       

摘要

Quantum dot (QD) superlattices, periodically ordered array structures of QDs, are expected to provide novel photo-optical functions due to their resonant couplings between adjacent QDs. Here, we computationally demonstrated that electronic structures and phonon dynamics of a QD superlattice can be effectively and selectively controlled by manipulating its interior nanospace, where quantum resonance between neighboring QDs appears, rather than by changing component QD size, shape, compositions, etc. A simple Hpassivated Si QD was examined to constitute one-, two-, and three-dimensional QD superlattices, and thermally fluctuating band energies and phonon modes were simulated by finite-temperature ab initio molecular dynamics (MD) simulations. The QD superlattice exhibited a decrease in the band gap energy enhanced by thermal modulations and also exhibited selective extraction of charge carriers out of the component QD, indicating its advantage as a promising platform for implementation in solar cells. Our dynamical phonon analyses based on the ab initio MD simulations revealed that THz-frequency phonon modes were created by an inter-QD crystalline lattice formed in the QD superlattice, which can contribute to low energy thermoelectric conversion and will be useful for direct observation of the dimension-dependent superlattice. Further, we found that crystalline and ligand-originated phonon modes inside each component QD can be independently controlled by asymmetry of the superlattice and by restriction of the interior nanospace, respectively. Taking into account the thermal effects at the finite temperature, we proposed guiding principles for designing efficient and space-saving QD superlattices to develop functional photovoltaic and thermoelectric devices.
机译:量子点(QD)超晶格,QD的周期性排列阵列结构由于其在相邻QD之间的共振耦合而有望提供新颖的光电功能。在这里,我们通过计算证明了,通过操纵其内部纳米空间(相邻的QD之间会发生量子共振),而不是通过改变分量QD的大小,形状,组成等,可以有效地和选择性地控制QD超晶格的电子结构和声子动力学。对简单的H钝化Si QD进行了检验,以构成一维,二维和三维QD超晶格,并通过有限温度从头算分子动力学(MD)模拟了热波动的能带和声子模式。 QD超晶格显示出通过热调制增强的带隙能量的减小,并且还显示出从分量QD中选择性提取电荷载流子,表明其作为在太阳能电池中实现的有希望的平台具有优势。基于从头算MD模拟的动态声子分析表明,太赫兹频率的声子模是由QD超晶格中形成的QD间晶格产生的,可有助于低能热电转换,可用于直接观察尺寸相关的超晶格。此外,我们发现每个组分QD内的晶体和配体起源的声子模式可以分别通过超晶格的不对称性和内部纳米空间的限制独立控制。考虑到在有限温度下的热效应,我们提出了设计高效,节省空间的QD超晶格以开发功能性光伏和热电器件的指导原则。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号